Edit model card

robbert_testrun

This model is a fine-tuned version of pdelobelle/robbert-v2-dutch-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3318
  • Precisions: 0.8562
  • Recall: 0.8095
  • F-measure: 0.8293
  • Accuracy: 0.9476

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 14

Training results

Training Loss Epoch Step Validation Loss Precisions Recall F-measure Accuracy
0.4465 1.0 269 0.3166 0.8058 0.6865 0.6693 0.9046
0.2204 2.0 538 0.2474 0.8108 0.7990 0.7979 0.9295
0.133 3.0 807 0.2529 0.8072 0.7719 0.7830 0.9357
0.087 4.0 1076 0.2601 0.8462 0.7886 0.8012 0.9415
0.0578 5.0 1345 0.2896 0.8286 0.8106 0.8186 0.9418
0.0307 6.0 1614 0.3017 0.8474 0.8065 0.8240 0.9433
0.0257 7.0 1883 0.3435 0.8488 0.8129 0.8270 0.9407
0.0159 8.0 2152 0.3318 0.8562 0.8095 0.8293 0.9476
0.0086 9.0 2421 0.3629 0.8433 0.8065 0.8224 0.9451
0.0067 10.0 2690 0.3700 0.8648 0.8020 0.8272 0.9451
0.0064 11.0 2959 0.3835 0.8328 0.8108 0.8203 0.9425
0.0041 12.0 3228 0.3625 0.8454 0.8094 0.8255 0.9447
0.0028 13.0 3497 0.3734 0.8450 0.8097 0.8254 0.9451
0.0021 14.0 3766 0.3706 0.8469 0.8119 0.8274 0.9462

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
17
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Tommert25/robbert_testrun

Finetuned
(40)
this model