Tommi Vehviläinen commited on
Commit
918159b
·
1 Parent(s): c5c1bfe

Add README

Browse files
Files changed (1) hide show
  1. README.md +134 -0
README.md CHANGED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: fi
3
+ datasets:
4
+ - common_voice
5
+ - CSS10
6
+ - Finnish parliament session 2
7
+ metrics:
8
+ - wer
9
+ tags:
10
+ - audio
11
+ - automatic-speech-recognition
12
+ - speech
13
+ - xlsr-fine-tuning-week
14
+ license: apache-2.0
15
+ model-index:
16
+ - name: Finnish XLSR Wav2Vec2 Large 53
17
+ results:
18
+ - task:
19
+ name: Speech Recognition
20
+ type: automatic-speech-recognition
21
+ dataset:
22
+ name: Common Voice fi
23
+ type: common_voice
24
+ args: fi
25
+ metrics:
26
+ - name: Test WER
27
+ type: wer
28
+ value: 35.43
29
+ ---
30
+
31
+ # Wav2Vec2-Large-XLSR-53-Finnish
32
+
33
+ Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Finnish using the [Common Voice](https://huggingface.co/datasets/common_voice), [CSS10](https://www.kaggle.com/bryanpark/finnish-single-speaker-speech-dataset) and [Finnish parliament session 2](https://b2share.eudat.eu/records/4df422d631544ce682d6af1d4714b2d4) datasets.
34
+
35
+ When using this model, make sure that your speech input is sampled at 16kHz.
36
+
37
+ ## Usage
38
+
39
+ The model can be used directly (without a language model) as follows:
40
+
41
+ ```python
42
+ import numpy as np
43
+ import torch
44
+ import torchaudio
45
+ from datasets import load_dataset
46
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
47
+
48
+ test_dataset = load_dataset("common_voice", "fi", split="test[:2%]")
49
+
50
+ processor = Wav2Vec2Processor.from_pretrained("Tommi/wav2vec2-large-xlsr-53-finnish")
51
+ model = Wav2Vec2ForCTC.from_pretrained("Tommi/wav2vec2-large-xlsr-53-finnish")
52
+
53
+ resampler = lambda sr, y: librosa.resample(y.squeeze(), sr, 16_000)
54
+
55
+ # Preprocessing the datasets.
56
+ # We need to read the aduio files as arrays
57
+ def speech_file_to_array_fn(batch):
58
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
59
+ batch["speech"] = resampler(sampling_rate, speech_array.numpy()).squeeze()
60
+ return batch
61
+
62
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
63
+ inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
64
+
65
+ with torch.no_grad():
66
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
67
+
68
+ predicted_ids = torch.argmax(logits, dim=-1)
69
+
70
+ print("Prediction:", processor.batch_decode(predicted_ids))
71
+ print("Reference:", test_dataset["sentence"][:2])
72
+ ```
73
+
74
+
75
+ ## Evaluation
76
+
77
+ The model can be evaluated as follows on the Finnish test data of Common Voice.
78
+
79
+
80
+ ```python
81
+ import librosa
82
+ import torch
83
+ import torchaudio
84
+ from datasets import load_dataset, load_metric
85
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
86
+ import re
87
+
88
+ test_dataset = load_dataset("common_voice", "fi", split="test")
89
+ wer = load_metric("wer")
90
+
91
+ processor = Wav2Vec2Processor.from_pretrained("Tommi/wav2vec2-large-xlsr-53-finnish")
92
+ model = Wav2Vec2ForCTC.from_pretrained("Tommi/wav2vec2-large-xlsr-53-finnish")
93
+ model.to("cuda")
94
+
95
+ chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\"\%\'\"\�\'\...\…\–\é]'
96
+
97
+ resampler = lambda sr, y: librosa.resample(y.numpy().squeeze(), sr, 16_000)
98
+
99
+ # Preprocessing the datasets.
100
+ # We need to read the audio files as arrays
101
+ def speech_file_to_array_fn(batch):
102
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
103
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
104
+ batch["speech"] = resampler(sampling_rate, speech_array).squeeze()
105
+ return batch
106
+
107
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
108
+
109
+ # Preprocessing the datasets.
110
+ # We need to read the audio files as arrays
111
+ def evaluate(batch):
112
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
113
+
114
+ with torch.no_grad():
115
+ logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
116
+
117
+ pred_ids = torch.argmax(logits, dim=-1)
118
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
119
+
120
+ return batch
121
+
122
+ result = test_dataset.map(evaluate, batched=True, batch_size=8)
123
+
124
+ print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
125
+ ```
126
+
127
+ **Test Result**: 35.43 %
128
+
129
+
130
+ ## Training
131
+
132
+ The Common Voice `train`, `validation`, and `other` datasets were used for training as well as CSS10 and Finnish parliament session 2
133
+
134
+ The script used for training can be found [here](...) # TODO: fill in a link to your training script here. If you trained your model in a colab, simply fill in the link here. If you trained the model locally, it would be great if you could upload the training script on github and paste the link here.