File size: 62,044 Bytes
578867d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 |
# coding=utf-8
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Mistral model."""
import inspect
import math
import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_flash_attn_2_available,
is_flash_attn_greater_or_equal_2_10,
logging,
replace_return_docstrings,
)
from transformers.integrations import is_deepspeed_zero3_enabled
from .configuration_mistral import MistralConfig
if is_flash_attn_2_available():
from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
from .modeling_beacon import Memory
from .modeling_utils import optional_grad_ctx, compute_loss, get_rope, ModelOutput
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "MistralConfig"
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
def _get_unpad_data(attention_mask):
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
return (
indices,
cu_seqlens,
max_seqlen_in_batch,
)
# Copied from transformers.models.llama.modeling_llama.MistralRMSNorm with Mistral->Mistral
class MistralRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
MistralRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
# Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Mistral
class MistralMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class MistralAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: MistralConfig, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.attention_dropout = config.attention_dropout
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.is_causal = True
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
self.rotary_emb = get_rope(self.head_dim, config.rope_theta, config.max_position_embeddings, getattr(config, "rope_scaling", None))
# NOTE: add extra parameters for beacon tokens
# skip post initialization to speed up loading
if "q" in config.beacon_param:
self.beacon_q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=self.q_proj.bias is not None)
# NOTE: initialize the beacon parameters as zero
self.beacon_q_proj.weight.data.zero_()
self.beacon_q_proj._is_hf_initialized = True
if "k" in config.beacon_param:
self.beacon_k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=self.k_proj.bias is not None)
self.beacon_k_proj.weight.data.zero_()
self.beacon_k_proj._is_hf_initialized = True
if "v" in config.beacon_param:
self.beacon_v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=self.v_proj.bias is not None)
self.beacon_v_proj.weight.data.zero_()
self.beacon_v_proj._is_hf_initialized = True
if "o" in config.beacon_param:
self.beacon_o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=self.o_proj.bias is not None)
self.beacon_o_proj.weight.data.zero_()
self.beacon_o_proj._is_hf_initialized = True
def _init_beacon_proj(self, missing_keys):
"""Initialize the beacon projection weight with that of the ordinal projection."""
beacon_param = self.config.beacon_param
if is_deepspeed_zero3_enabled():
# FIXME: after deepspeed initialization, some weights becomes non-zero
# For Mistral, there are rows that are full of zeros
# For Mistral, there are values bigger than 1e29...
import deepspeed
if "q" in beacon_param:
params = [self.beacon_q_proj.weight, self.q_proj.weight]
if self.q_proj.bias is not None:
params.extend([self.beacon_q_proj.bias, self.q_proj.bias])
with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
# FIXME: after deepspeed initialization, some weights becomes non-zero, but there are rows that are full of zeros
if (self.beacon_q_proj.weight.sum(-1) == 0).any() or (self.beacon_q_proj.weight > 1e29).any():
self.beacon_q_proj.weight.data[:] = self.q_proj.weight.data
if self.q_proj.bias is not None:
self.beacon_q_proj.bias.data[:] = self.q_proj.bias.data
if "k" in beacon_param:
params = [self.beacon_k_proj.weight, self.k_proj.weight]
if self.k_proj.bias is not None:
params.extend([self.beacon_k_proj.bias, self.k_proj.bias])
with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
# FIXME: after deepspeed initialization, some weights becomes non-zero, but there are rows that are full of zeros
if (self.beacon_k_proj.weight.sum(-1) == 0).any() or (self.beacon_k_proj.weight > 1e29).any():
self.beacon_k_proj.weight.data[:] = self.k_proj.weight.data
if self.k_proj.bias is not None:
self.beacon_k_proj.bias.data[:] = self.k_proj.bias.data
if "v" in beacon_param:
params = [self.beacon_v_proj.weight, self.v_proj.weight]
if self.v_proj.bias is not None:
params.extend([self.beacon_v_proj.bias, self.v_proj.bias])
with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
# FIXME: after deepspeed initialization, some weights becomes non-zero, but there are rows that are full of zeros
if (self.beacon_v_proj.weight.sum(-1) == 0).any() or (self.beacon_v_proj.weight > 1e29).any():
self.beacon_v_proj.weight.data[:] = self.v_proj.weight.data
if self.v_proj.bias is not None:
self.beacon_v_proj.bias.data[:] = self.v_proj.bias.data
if "o" in beacon_param:
params = [self.beacon_o_proj.weight, self.o_proj.weight]
if self.o_proj.bias is not None:
params.extend([self.beacon_o_proj.bias, self.o_proj.bias])
with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
# FIXME: after deepspeed initialization, some weights becomes non-zero, but there are rows that are full of zeros
if (self.beacon_o_proj.weight.sum(-1) == 0).any() or (self.beacon_o_proj.weight > 1e29).any():
self.beacon_o_proj.weight.data[:] = self.o_proj.weight.data
if self.o_proj.bias is not None:
self.beacon_o_proj.bias.data[:] = self.o_proj.bias.data
else:
# only copy the value in-place, without tieing the weight
if "q" in beacon_param and any("beacon_q_proj" in missing_key for missing_key in missing_keys):
# FIXME: some beacon weights are not initialized as zero for mistral model, why?
# if (self.beacon_q_proj.weight == 0).all():
self.beacon_q_proj.weight.data[:] = self.q_proj.weight.data
if self.q_proj.bias is not None:
self.beacon_q_proj.bias.data[:] = self.q_proj.bias.data
if "k" in beacon_param and any("beacon_k_proj" in missing_key for missing_key in missing_keys):
# if (self.beacon_k_proj.weight == 0).all():
self.beacon_k_proj.weight.data[:] = self.k_proj.weight.data
if self.k_proj.bias is not None:
self.beacon_k_proj.bias.data[:] = self.k_proj.bias.data
if "v" in beacon_param and any("beacon_v_proj" in missing_key for missing_key in missing_keys):
# if (self.beacon_v_proj.weight == 0).all():
self.beacon_v_proj.weight.data[:] = self.v_proj.weight.data
if self.v_proj.bias is not None:
self.beacon_v_proj.bias.data[:] = self.v_proj.bias.data
if "o" in beacon_param and any("beacon_o_proj" in missing_key for missing_key in missing_keys):
# if (self.beacon_o_proj.weight == 0).all():
self.beacon_o_proj.weight.data[:] = self.o_proj.weight.data
if self.o_proj.bias is not None:
self.beacon_o_proj.bias.data[:] = self.o_proj.bias.data
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def qkv_proj_with_beacon(self, hidden_states, beacon_size, beacon_indices):
if beacon_size > 0:
# NOTE: when beacon_pos == "interleave", the beacon_indices points to all beacon tokens in the current window (cached activations + input_ids), so we shall slice out the part corresponding to the input_ids
cur_beacon_indices = beacon_indices[-hidden_states.shape[1]:]
# NOTE: there is slight redundant computation because ordinal tokens should never be projected by beacon matrices, but we are doing this for efficiency
if "q" in self.config.beacon_param:
ordinal_query_states = self.q_proj(hidden_states)
beacon_query_states = self.beacon_q_proj(hidden_states)
query_states = torch.where((cur_beacon_indices == 0)[:, None], ordinal_query_states, beacon_query_states)
if (cur_beacon_indices == 2).any():
# beacon_indices == 2 means the beacon token is used to replicate the ones in previous window for parallel encoding
# we should slice out all beacon tokens then copy them to the replicate beacon tokens
query_states[:, cur_beacon_indices == 2] = beacon_query_states[:, cur_beacon_indices == 1][:, :(cur_beacon_indices == 2).sum()]
else:
query_states = self.q_proj(hidden_states)
if "k" in self.config.beacon_param:
ordinal_key_states = self.k_proj(hidden_states)
beacon_key_states = self.beacon_k_proj(hidden_states)
key_states = torch.where((cur_beacon_indices == 0)[:, None], ordinal_key_states, beacon_key_states)
if (cur_beacon_indices == 2).any():
# beacon_indices == 2 means the beacon token is used to replicate the ones in previous window for parallel encoding
# we should slice out all beacon tokens then copy them to the replicate beacon tokens
key_states[:, cur_beacon_indices == 2] = beacon_key_states[:, cur_beacon_indices == 1][:, :(cur_beacon_indices == 2).sum()]
else:
key_states = self.k_proj(hidden_states)
if "v" in self.config.beacon_param:
ordinal_value_states = self.v_proj(hidden_states)
beacon_value_states = self.beacon_v_proj(hidden_states)
value_states = torch.where((cur_beacon_indices == 0)[:, None], ordinal_value_states, beacon_value_states)
if (cur_beacon_indices == 2).any():
# beacon_indices == 2 means the beacon token is used to replicate the ones in previous window for parallel encoding
# we should slice out all beacon tokens then copy them to the replicate beacon tokens
value_states[:, cur_beacon_indices == 2] = beacon_value_states[:, cur_beacon_indices == 1][:, :(cur_beacon_indices == 2).sum()]
else:
value_states = self.v_proj(hidden_states)
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
return query_states, key_states, value_states
def o_proj_with_beacon(self, attn_output, beacon_size, beacon_indices):
if beacon_size > 0:
# NOTE: when beacon_pos == "interleave", the beacon_indices points to all beacon tokens in the current window (cached activations + input_ids), so we shall slice out the part corresponding to the input_ids
cur_beacon_indices = beacon_indices[-attn_output.shape[1]:]
if "o" in self.config.beacon_param:
ordinal_attn_output = self.o_proj(attn_output)
beacon_attn_output = self.beacon_o_proj(attn_output)
attn_output = torch.where((cur_beacon_indices == 0)[:, None], ordinal_attn_output, beacon_attn_output)
else:
attn_output = self.o_proj(attn_output)
else:
attn_output = self.o_proj(attn_output)
return attn_output
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
bsz, q_len, _ = hidden_states.size()
kv_seq_len = hidden_states.shape[-2]
past_key, past_value, beacon_size, beacon_indices = past_key_value
if past_key is not None:
past_seq_len = past_key.shape[2]
kv_seq_len += past_seq_len
else:
past_seq_len = 0
query_states, key_states, value_states = self.qkv_proj_with_beacon(hidden_states, beacon_size, beacon_indices)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
# return keys and values before rope
# NOTE: incrementally return keys and values for efficiency
past_key_value = (key_states, value_states, beacon_size, beacon_indices)
if past_key is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key, key_states], dim=2)
value_states = torch.cat([past_value, value_states], dim=2)
query_states, key_states = self.rotary_emb(query_states, key_states, position_ids)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj_with_beacon(attn_output, beacon_size, beacon_indices)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class MistralSdpaAttention(MistralAttention):
"""
Mistral attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
`MistralAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
SDPA API.
"""
# Adapted from MistralAttention.forward
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if output_attentions:
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"MistralModel is using MistralSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
bsz, q_len, _ = hidden_states.size()
kv_seq_len = hidden_states.shape[-2]
past_key, past_value, beacon_size, beacon_indices = past_key_value
if past_key is not None:
past_seq_len = past_key.shape[2]
kv_seq_len += past_seq_len
else:
past_seq_len = 0
query_states, key_states, value_states = self.qkv_proj_with_beacon(hidden_states, beacon_size, beacon_indices)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
# return keys and values before rope
# NOTE: incrementally return keys and values for efficiency
past_key_value = (key_states, value_states, beacon_size, beacon_indices)
if past_key is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key, key_states], dim=2)
value_states = torch.cat([past_value, value_states], dim=2)
query_states, key_states = self.rotary_emb(query_states, key_states, position_ids)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and attention_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=attention_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
is_causal=self.is_causal and attention_mask is None and q_len > 1,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.o_proj_with_beacon(attn_output, beacon_size, beacon_indices)
return attn_output, None, past_key_value
class MistralFlashAttention2(MistralAttention):
"""
Mistral flash attention module. This module inherits from `MistralAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
output_attentions = False
bsz, q_len, _ = hidden_states.size()
kv_seq_len = hidden_states.shape[-2]
past_key, past_value, beacon_size, beacon_indices = past_key_value
if past_key is not None:
past_seq_len = past_key.shape[2]
kv_seq_len += past_seq_len
else:
past_seq_len = 0
query_states, key_states, value_states = self.qkv_proj_with_beacon(hidden_states, beacon_size, beacon_indices)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
# return keys and values before rope
# NOTE: incrementally return keys and values for efficiency
past_key_value = (key_states, value_states, beacon_size, beacon_indices)
if past_key is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key, key_states], dim=2)
value_states = torch.cat([past_value, value_states], dim=2)
query_states, key_states = self.rotary_emb(query_states, key_states, position_ids)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
# to be able to avoid many of these transpose/reshape/view.
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
dropout_rate = self.attention_dropout if self.training else 0.0
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32. (MistralRMSNorm handles it correctly)
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
attn_output = self._flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
dropout=dropout_rate
)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
attn_output = self.o_proj_with_beacon(attn_output, beacon_size, beacon_indices)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def _flash_attention_forward(
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
):
"""
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
first unpad the input, then computes the attention scores and pad the final attention scores.
Args:
query_states (`torch.Tensor`):
Input query states to be passed to Flash Attention API
key_states (`torch.Tensor`):
Input key states to be passed to Flash Attention API
value_states (`torch.Tensor`):
Input value states to be passed to Flash Attention API
attention_mask (`torch.Tensor`):
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
position of padding tokens and 1 for the position of non-padding tokens.
dropout (`float`):
Attention dropout
softmax_scale (`float`, *optional*):
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
"""
if not self._flash_attn_uses_top_left_mask:
causal = self.is_causal
else:
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in MistralFlashAttention2 __init__.
causal = self.is_causal and query_length != 1
# Contains at least one padding token in the sequence
if attention_mask is not None:
batch_size = query_states.shape[0]
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
query_states, key_states, value_states, attention_mask, query_length
)
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
attn_output_unpad = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=dropout,
softmax_scale=softmax_scale,
causal=causal,
)
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
else:
attn_output = flash_attn_func(
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
)
return attn_output
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
key_layer = index_first_axis(
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
)
value_layer = index_first_axis(
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
)
if query_length == kv_seq_len:
query_layer = index_first_axis(
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
)
cu_seqlens_q = cu_seqlens_k
max_seqlen_in_batch_q = max_seqlen_in_batch_k
indices_q = indices_k
elif query_length == 1:
max_seqlen_in_batch_q = 1
cu_seqlens_q = torch.arange(
batch_size + 1, dtype=torch.int32, device=query_layer.device
) # There is a memcpy here, that is very bad.
indices_q = cu_seqlens_q[:-1]
query_layer = query_layer.squeeze(1)
else:
# The -q_len: slice assumes left padding.
attention_mask = attention_mask[:, -query_length:]
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
return (
query_layer,
key_layer,
value_layer,
indices_q,
(cu_seqlens_q, cu_seqlens_k),
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
)
MISTRAL_ATTENTION_CLASSES = {
"eager": MistralAttention,
"sdpa": MistralSdpaAttention,
"flash_attention_2": MistralFlashAttention2,
}
class MistralDecoderLayer(nn.Module):
def __init__(self, config: MistralConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
if config.sliding_window is not None and config._attn_implementation != "flash_attention_2":
logger.warning_once(
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
"unexpected results may be encountered."
)
self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
self.mlp = MistralMLP(config)
self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, sequence_length)` where padding elements are indicated by 0.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
"""
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
MISTRAL_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`MistralConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Mistral Model outputting raw hidden-states without any specific head on top.",
MISTRAL_START_DOCSTRING,
)
class MistralPreTrainedModel(PreTrainedModel):
config_class = MistralConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["MistralDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
MISTRAL_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
Two formats are allowed:
- a [`~cache_utils.Cache`] instance;
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
cache format.
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
legacy cache format will be returned.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Mistral Model outputting raw hidden-states without any specific head on top.",
MISTRAL_START_DOCSTRING,
)
class MistralModel(MistralPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`]
Args:
config: MistralConfig
"""
def __init__(self, config: MistralConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
# BEACON: add beacon embedding
self.beacon_embed_tokens = nn.Embedding(1, config.hidden_size, self.padding_idx)
self.beacon_embed_tokens._is_hf_initialized = True
self.layers = nn.ModuleList(
[MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self._attn_implementation = config._attn_implementation
self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def _init_beacon_embed(self, missing_keys):
"""Initialize the beacon token embedding with that of the eos token."""
if is_deepspeed_zero3_enabled():
import deepspeed
params = [self.beacon_embed_tokens.weight, self.embed_tokens.weight]
with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
# deepspeed will initialize the parameters to zero
if (self.beacon_embed_tokens.weight == 0).all():
if self.config.beacon_embed_init == "bos":
self.beacon_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[self.config.bos_token_id]
elif self.config.beacon_embed_init == "eos":
if isinstance(self.config.eos_token_id, list):
eos_token_id = self.config.eos_token_id[0]
else:
eos_token_id = self.config.eos_token_id
self.beacon_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[eos_token_id]
else:
raise NotImplementedError(f"Make sure beacon_embed_init is either eos or bos, found {self.config.beacon_embed_init}")
else:
if any("beacon_embed_tokens" in missing_key for missing_key in missing_keys):
if self.config.beacon_embed_init == "bos":
self.beacon_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[self.config.bos_token_id]
elif self.config.beacon_embed_init == "eos":
if isinstance(self.config.eos_token_id, list):
eos_token_id = self.config.eos_token_id[0]
else:
eos_token_id = self.config.eos_token_id
self.beacon_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[eos_token_id]
else:
raise NotImplementedError(f"Make sure beacon_embed_init is either eos or bos, found {self.config.beacon_embed_init}")
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
# BEACON: always use cache
use_cache = True
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape[:2]
elif inputs_embeds is not None:
batch_size, seq_length = inputs_embeds.shape[:2]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
past_key, past_value, beacon_size, beacon_indices = past_key_values[0]
# BEACON: separately embed ordinal tokens and beacon tokens because ordinal tokens do not receive gradients
if beacon_size > 0:
# NOTE: when beacon_pos == "interleave", the beacon_indices points to all beacon tokens in the current window (cached activations + input_ids), so we shall slice out the part corresponding to the input_ids
cur_beacon_indices = beacon_indices[-input_ids.shape[1]:]
ordinal_input_ids = input_ids[:, cur_beacon_indices == 0]
beacon_input_ids = input_ids[:, cur_beacon_indices > 0]
ordinal_inputs_embeds = self.embed_tokens(ordinal_input_ids)
beacon_input_embeds = self.beacon_embed_tokens(beacon_input_ids - self.config.vocab_size)
# create a new embedding tensor
inputs_embeds = beacon_input_embeds.new_zeros(*input_ids.shape, beacon_input_embeds.shape[-1])
inputs_embeds[:, cur_beacon_indices == 0] = ordinal_inputs_embeds
inputs_embeds[:, cur_beacon_indices > 0] = beacon_input_embeds
else:
inputs_embeds = self.embed_tokens(input_ids)
# embed positions
hidden_states = inputs_embeds
# print(f"input_ids: {input_ids}")
# print(f"beacon_indices: {beacon_indices}")
# print(f"position_ids: {position_ids}")
# print(f"attention_mask:\n{attention_mask == 0}")
# x = input()
# if x == "s":
# return
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
# BEACON: still use tuple to organize cache
next_decoder_cache = () if use_cache else None
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
# BEACON: slice out the past_key_value of the corresponding layer
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
position_ids,
past_key_value,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class MistralForCausalLM(MistralPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = MistralModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@classmethod
def from_pretrained(cls, *args, **kwargs):
"""Override the default from_pretrained to extend vocab size according to beacon_size."""
kwargs.update(output_loading_info=True)
model, loading_info = super().from_pretrained(*args, **kwargs)
# NOTE: set memory after from_pretrained because there may be another transformer model inside the Memory object, which may cause weird erros during loading
config = model.config
model.memory = Memory(
model_config=config,
k_seq_dim=2,
v_seq_dim=2,
)
missing_keys = loading_info["missing_keys"]
# NOTE: the beacon parameters may or may not be loaded from the checkpoint
# if it is loaded from the checkpoint, we should not re-initilize it
model.model._init_beacon_embed(missing_keys)
# initialize weights of possible q,k,v,o,mlp
for layer in model.model.layers:
layer.self_attn._init_beacon_proj(missing_keys)
return model
def _native_forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# when we directly call _native_forward, the past_key_values would be None
if past_key_values is None:
# NOTE: set beacon size to 0 to avoid using any beacon parameters, see Qwen2Attention.forward
past_key_values = [(None, None, 0, None) for _ in range(self.config.num_hidden_layers)]
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
logits = logits.float()
loss = None
batch_loss = None
token_loss = None
if labels is not None:
loss, batch_loss, token_loss = compute_loss(logits, labels, shift=False)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return ModelOutput(
loss=loss,
batch_loss=batch_loss,
token_loss=token_loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def _beacon_forward(self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
beacon_skip_first=None,
beacon_skip_last=None
):
# t1 = time.time()
# initialize cache
self.memory.prepare(
input_ids=input_ids,
attention_mask=attention_mask,
labels=labels
)
# t2 = time.time()
while not self.memory.finish:
# t3 = time.time()
input_ids, attention_mask, position_ids, past_key_values, labels = self.memory.step()
# t4 = time.time()
outputs = self._native_forward(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
labels=labels,
)
# t5 = time.time()
# update past_key_values
self.memory.update_memory(outputs.past_key_values)
# t6 = time.time()
if labels is not None:
# update loss
self.memory.update_loss(outputs.batch_loss, (labels != -100).sum(-1))
# t7 = time.time()
# print(f"step time: {t4-t3}, forward time: {t5-t4}, update time: {t6-t5}, loss time: {t7-t6}")
# input()
# t8 = time.time()
# output loss, past_key_values, and perplexity
outputs = self.memory.output(outputs)
# t9 = time.time()
# print(f"output time: {t9-t8}")
# input()
return outputs
def forward(self, **kwargs):
"""Forward computation over a batch of sequences.
"""
# only allow gradient when training
with optional_grad_ctx(with_grad=self.training):
# we can disable beacon to use the original mistral
if hasattr(self, "_enable_beacon") and self._enable_beacon == False:
return self._native_forward(**kwargs)
else:
return self._beacon_forward(**kwargs)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, beacon_skip_first=None, beacon_skip_last=None, **kwargs
):
if past_key_values:
input_ids = input_ids[:, -1:]
model_inputs = {"input_ids": input_ids, "beacon_skip_first": beacon_skip_first, "beacon_skip_last": beacon_skip_last}
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past |