qhjqhj00
commited on
Commit
·
74ae950
1
Parent(s):
6510631
init
Browse files- added_tokens.json +5 -0
- config.json +52 -0
- configuration_qwen2.py +171 -0
- generation_config.json +14 -0
- merges.txt +0 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +515 -0
- model_args.json +1 -0
- modeling_beacon.py +1143 -0
- modeling_qwen2.py +1309 -0
- modeling_utils.py +711 -0
- special_tokens_map.json +20 -0
- tokenizer.json +0 -0
- tokenizer_config.json +44 -0
- training_args.bin +3 -0
- vocab.json +0 -0
added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|endoftext|>": 151643,
|
3 |
+
"<|im_end|>": 151645,
|
4 |
+
"<|im_start|>": 151644
|
5 |
+
}
|
config.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/share/qhj/Activation-Beacon/outputs/beacon-qwen2-full_coverage-interleave-2048_2048-2,4,8,16,32-step_random-qkv-redpajama/checkpoint-11436",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_qwen2.Qwen2Config",
|
9 |
+
"AutoModelForCausalLM": "modeling_qwen2.Qwen2ForCausalLM"
|
10 |
+
},
|
11 |
+
"beacon_attend_prev": true,
|
12 |
+
"beacon_attn": "full-coverage",
|
13 |
+
"beacon_embed_init": "eos",
|
14 |
+
"beacon_parallel_window": 1,
|
15 |
+
"beacon_param": [
|
16 |
+
"q",
|
17 |
+
"k",
|
18 |
+
"v"
|
19 |
+
],
|
20 |
+
"beacon_pos": "interleave",
|
21 |
+
"beacon_ratio": [
|
22 |
+
2,
|
23 |
+
4,
|
24 |
+
8
|
25 |
+
],
|
26 |
+
"beacon_ratio_mix": "step-random",
|
27 |
+
"beacon_sink_size": 0,
|
28 |
+
"beacon_stride": 2048,
|
29 |
+
"beacon_window": 2048,
|
30 |
+
"bos_token_id": 151643,
|
31 |
+
"eos_token_id": 151645,
|
32 |
+
"hidden_act": "silu",
|
33 |
+
"hidden_size": 3584,
|
34 |
+
"initializer_range": 0.02,
|
35 |
+
"intermediate_size": 18944,
|
36 |
+
"max_position_embeddings": 32768,
|
37 |
+
"max_window_layers": 28,
|
38 |
+
"model_type": "qwen2",
|
39 |
+
"num_attention_heads": 28,
|
40 |
+
"num_hidden_layers": 28,
|
41 |
+
"num_key_value_heads": 4,
|
42 |
+
"rms_norm_eps": 1e-06,
|
43 |
+
"rope_scaling": null,
|
44 |
+
"rope_theta": 1000000.0,
|
45 |
+
"sliding_window": 131072,
|
46 |
+
"tie_word_embeddings": false,
|
47 |
+
"torch_dtype": "bfloat16",
|
48 |
+
"transformers_version": "4.43.1",
|
49 |
+
"use_cache": true,
|
50 |
+
"use_sliding_window": false,
|
51 |
+
"vocab_size": 152064
|
52 |
+
}
|
configuration_qwen2.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Qwen2 model configuration"""
|
16 |
+
|
17 |
+
from transformers.configuration_utils import PretrainedConfig
|
18 |
+
from transformers.utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
QWEN2_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
24 |
+
"Qwen/Qwen2-7B-beta": "https://huggingface.co/Qwen/Qwen2-7B-beta/resolve/main/config.json",
|
25 |
+
}
|
26 |
+
|
27 |
+
|
28 |
+
class Qwen2Config(PretrainedConfig):
|
29 |
+
r"""
|
30 |
+
This is the configuration class to store the configuration of a [`Qwen2Model`]. It is used to instantiate a
|
31 |
+
Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
32 |
+
with the defaults will yield a similar configuration to that of
|
33 |
+
Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta).
|
34 |
+
|
35 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
36 |
+
documentation from [`PretrainedConfig`] for more information.
|
37 |
+
|
38 |
+
|
39 |
+
Args:
|
40 |
+
vocab_size (`int`, *optional*, defaults to 151936):
|
41 |
+
Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by the
|
42 |
+
`inputs_ids` passed when calling [`Qwen2Model`]
|
43 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
44 |
+
Dimension of the hidden representations.
|
45 |
+
intermediate_size (`int`, *optional*, defaults to 22016):
|
46 |
+
Dimension of the MLP representations.
|
47 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
48 |
+
Number of hidden layers in the Transformer encoder.
|
49 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
50 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
51 |
+
num_key_value_heads (`int`, *optional*, defaults to 32):
|
52 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
53 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
54 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
55 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
56 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
57 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
|
58 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
59 |
+
The non-linear activation function (function or string) in the decoder.
|
60 |
+
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
61 |
+
The maximum sequence length that this model might ever be used with.
|
62 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
63 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
64 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
65 |
+
The epsilon used by the rms normalization layers.
|
66 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
67 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
68 |
+
relevant if `config.is_decoder=True`.
|
69 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
70 |
+
Whether the model's input and output word embeddings should be tied.
|
71 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
72 |
+
The base period of the RoPE embeddings.
|
73 |
+
use_sliding_window (`bool`, *optional*, defaults to `False`):
|
74 |
+
Whether to use sliding window attention.
|
75 |
+
sliding_window (`int`, *optional*, defaults to 4096):
|
76 |
+
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
|
77 |
+
max_window_layers (`int`, *optional*, defaults to 28):
|
78 |
+
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
|
79 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
80 |
+
The dropout ratio for the attention probabilities.
|
81 |
+
|
82 |
+
```python
|
83 |
+
>>> from transformers import Qwen2Model, Qwen2Config
|
84 |
+
|
85 |
+
>>> # Initializing a Qwen2 style configuration
|
86 |
+
>>> configuration = Qwen2Config()
|
87 |
+
|
88 |
+
>>> # Initializing a model from the Qwen2-7B style configuration
|
89 |
+
>>> model = Qwen2Model(configuration)
|
90 |
+
|
91 |
+
>>> # Accessing the model configuration
|
92 |
+
>>> configuration = model.config
|
93 |
+
```"""
|
94 |
+
|
95 |
+
model_type = "qwen2"
|
96 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
97 |
+
|
98 |
+
def __init__(
|
99 |
+
self,
|
100 |
+
vocab_size=151936,
|
101 |
+
hidden_size=4096,
|
102 |
+
intermediate_size=22016,
|
103 |
+
num_hidden_layers=32,
|
104 |
+
num_attention_heads=32,
|
105 |
+
num_key_value_heads=32,
|
106 |
+
hidden_act="silu",
|
107 |
+
max_position_embeddings=32768,
|
108 |
+
initializer_range=0.02,
|
109 |
+
rms_norm_eps=1e-6,
|
110 |
+
use_cache=True,
|
111 |
+
tie_word_embeddings=False,
|
112 |
+
rope_theta=10000.0,
|
113 |
+
use_sliding_window=False,
|
114 |
+
sliding_window=4096,
|
115 |
+
rope_scaling=None,
|
116 |
+
max_window_layers=28,
|
117 |
+
attention_dropout=0.0,
|
118 |
+
beacon_window=1024,
|
119 |
+
beacon_stride=1024,
|
120 |
+
beacon_attn="full-coverage",
|
121 |
+
beacon_ratio=[2,4,8,16,32],
|
122 |
+
beacon_ratio_mix="step-random",
|
123 |
+
beacon_param=[],
|
124 |
+
beacon_embed_init="eos",
|
125 |
+
beacon_sink_size=0,
|
126 |
+
beacon_attend_prev=True,
|
127 |
+
beacon_pos="interleave",
|
128 |
+
beacon_parallel_window=1,
|
129 |
+
beacon_accum=True,
|
130 |
+
**kwargs,
|
131 |
+
):
|
132 |
+
self.vocab_size = vocab_size
|
133 |
+
self.max_position_embeddings = max_position_embeddings
|
134 |
+
self.hidden_size = hidden_size
|
135 |
+
self.intermediate_size = intermediate_size
|
136 |
+
self.num_hidden_layers = num_hidden_layers
|
137 |
+
self.num_attention_heads = num_attention_heads
|
138 |
+
self.use_sliding_window = use_sliding_window
|
139 |
+
self.sliding_window = sliding_window
|
140 |
+
self.max_window_layers = max_window_layers
|
141 |
+
self.rope_scaling = rope_scaling
|
142 |
+
|
143 |
+
# for backward compatibility
|
144 |
+
if num_key_value_heads is None:
|
145 |
+
num_key_value_heads = num_attention_heads
|
146 |
+
|
147 |
+
self.num_key_value_heads = num_key_value_heads
|
148 |
+
self.hidden_act = hidden_act
|
149 |
+
self.initializer_range = initializer_range
|
150 |
+
self.rms_norm_eps = rms_norm_eps
|
151 |
+
self.use_cache = use_cache
|
152 |
+
self.rope_theta = rope_theta
|
153 |
+
self.attention_dropout = attention_dropout
|
154 |
+
|
155 |
+
self.beacon_window = beacon_window
|
156 |
+
self.beacon_stride = beacon_stride
|
157 |
+
self.beacon_attn = beacon_attn
|
158 |
+
self.beacon_ratio = beacon_ratio
|
159 |
+
self.beacon_ratio_mix = beacon_ratio_mix
|
160 |
+
self.beacon_param = beacon_param
|
161 |
+
self.beacon_embed_init = beacon_embed_init
|
162 |
+
self.beacon_sink_size = beacon_sink_size
|
163 |
+
self.beacon_attend_prev = beacon_attend_prev
|
164 |
+
self.beacon_pos = beacon_pos
|
165 |
+
self.beacon_parallel_window = beacon_parallel_window
|
166 |
+
self.beacon_accum = beacon_accum
|
167 |
+
|
168 |
+
super().__init__(
|
169 |
+
tie_word_embeddings=tie_word_embeddings,
|
170 |
+
**kwargs,
|
171 |
+
)
|
generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.05,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.43.1"
|
14 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a965d8b29f5fcd3f8c3cb045bcfd4e26922cda09e9668c9950613e2a74e4051
|
3 |
+
size 4947453128
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:542e733db79297f2a97e949ca21cabe4ffcd01ea2734cf31f42fd0b9e212f536
|
3 |
+
size 4991570400
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8cf8c07295981aeba4ee35554d3ad9e0946a4a4fc4f82cb99e88a598e9041e40
|
3 |
+
size 4991570464
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be55956e1438674b224d89ead13eb3f344889917899b7b5f5d321520255e7159
|
3 |
+
size 1225807416
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,515 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 16156342272
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"model.beacon_embed_tokens.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
14 |
+
"model.layers.0.self_attn.beacon_k_proj.bias": "model-00001-of-00004.safetensors",
|
15 |
+
"model.layers.0.self_attn.beacon_k_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.layers.0.self_attn.beacon_q_proj.bias": "model-00001-of-00004.safetensors",
|
17 |
+
"model.layers.0.self_attn.beacon_q_proj.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"model.layers.0.self_attn.beacon_v_proj.bias": "model-00001-of-00004.safetensors",
|
19 |
+
"model.layers.0.self_attn.beacon_v_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
21 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
24 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
26 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
27 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
28 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
29 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
30 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
31 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
32 |
+
"model.layers.1.self_attn.beacon_k_proj.bias": "model-00001-of-00004.safetensors",
|
33 |
+
"model.layers.1.self_attn.beacon_k_proj.weight": "model-00001-of-00004.safetensors",
|
34 |
+
"model.layers.1.self_attn.beacon_q_proj.bias": "model-00001-of-00004.safetensors",
|
35 |
+
"model.layers.1.self_attn.beacon_q_proj.weight": "model-00001-of-00004.safetensors",
|
36 |
+
"model.layers.1.self_attn.beacon_v_proj.bias": "model-00001-of-00004.safetensors",
|
37 |
+
"model.layers.1.self_attn.beacon_v_proj.weight": "model-00001-of-00004.safetensors",
|
38 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
39 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
40 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
41 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
42 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
43 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
44 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
45 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
50 |
+
"model.layers.10.self_attn.beacon_k_proj.bias": "model-00002-of-00004.safetensors",
|
51 |
+
"model.layers.10.self_attn.beacon_k_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"model.layers.10.self_attn.beacon_q_proj.bias": "model-00002-of-00004.safetensors",
|
53 |
+
"model.layers.10.self_attn.beacon_q_proj.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"model.layers.10.self_attn.beacon_v_proj.bias": "model-00002-of-00004.safetensors",
|
55 |
+
"model.layers.10.self_attn.beacon_v_proj.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
57 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
60 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
62 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
65 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
67 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"model.layers.11.self_attn.beacon_k_proj.bias": "model-00002-of-00004.safetensors",
|
69 |
+
"model.layers.11.self_attn.beacon_k_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.layers.11.self_attn.beacon_q_proj.bias": "model-00002-of-00004.safetensors",
|
71 |
+
"model.layers.11.self_attn.beacon_q_proj.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.layers.11.self_attn.beacon_v_proj.bias": "model-00002-of-00004.safetensors",
|
73 |
+
"model.layers.11.self_attn.beacon_v_proj.weight": "model-00002-of-00004.safetensors",
|
74 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
75 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
77 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
78 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
79 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
80 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
86 |
+
"model.layers.12.self_attn.beacon_k_proj.bias": "model-00002-of-00004.safetensors",
|
87 |
+
"model.layers.12.self_attn.beacon_k_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"model.layers.12.self_attn.beacon_q_proj.bias": "model-00002-of-00004.safetensors",
|
89 |
+
"model.layers.12.self_attn.beacon_q_proj.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"model.layers.12.self_attn.beacon_v_proj.bias": "model-00002-of-00004.safetensors",
|
91 |
+
"model.layers.12.self_attn.beacon_v_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
93 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
96 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
98 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
101 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
103 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"model.layers.13.self_attn.beacon_k_proj.bias": "model-00002-of-00004.safetensors",
|
105 |
+
"model.layers.13.self_attn.beacon_k_proj.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"model.layers.13.self_attn.beacon_q_proj.bias": "model-00002-of-00004.safetensors",
|
107 |
+
"model.layers.13.self_attn.beacon_q_proj.weight": "model-00002-of-00004.safetensors",
|
108 |
+
"model.layers.13.self_attn.beacon_v_proj.bias": "model-00002-of-00004.safetensors",
|
109 |
+
"model.layers.13.self_attn.beacon_v_proj.weight": "model-00002-of-00004.safetensors",
|
110 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
111 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
113 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
114 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
115 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
116 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
117 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
118 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
119 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
120 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
121 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
122 |
+
"model.layers.14.self_attn.beacon_k_proj.bias": "model-00002-of-00004.safetensors",
|
123 |
+
"model.layers.14.self_attn.beacon_k_proj.weight": "model-00002-of-00004.safetensors",
|
124 |
+
"model.layers.14.self_attn.beacon_q_proj.bias": "model-00002-of-00004.safetensors",
|
125 |
+
"model.layers.14.self_attn.beacon_q_proj.weight": "model-00002-of-00004.safetensors",
|
126 |
+
"model.layers.14.self_attn.beacon_v_proj.bias": "model-00002-of-00004.safetensors",
|
127 |
+
"model.layers.14.self_attn.beacon_v_proj.weight": "model-00002-of-00004.safetensors",
|
128 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
129 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
130 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
131 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
132 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
133 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
134 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
135 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
136 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
137 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
138 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
139 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
140 |
+
"model.layers.15.self_attn.beacon_k_proj.bias": "model-00002-of-00004.safetensors",
|
141 |
+
"model.layers.15.self_attn.beacon_k_proj.weight": "model-00002-of-00004.safetensors",
|
142 |
+
"model.layers.15.self_attn.beacon_q_proj.bias": "model-00002-of-00004.safetensors",
|
143 |
+
"model.layers.15.self_attn.beacon_q_proj.weight": "model-00002-of-00004.safetensors",
|
144 |
+
"model.layers.15.self_attn.beacon_v_proj.bias": "model-00002-of-00004.safetensors",
|
145 |
+
"model.layers.15.self_attn.beacon_v_proj.weight": "model-00002-of-00004.safetensors",
|
146 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
147 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
148 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
149 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
150 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
151 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
152 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
153 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
154 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
155 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
156 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
157 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
158 |
+
"model.layers.16.self_attn.beacon_k_proj.bias": "model-00002-of-00004.safetensors",
|
159 |
+
"model.layers.16.self_attn.beacon_k_proj.weight": "model-00002-of-00004.safetensors",
|
160 |
+
"model.layers.16.self_attn.beacon_q_proj.bias": "model-00002-of-00004.safetensors",
|
161 |
+
"model.layers.16.self_attn.beacon_q_proj.weight": "model-00002-of-00004.safetensors",
|
162 |
+
"model.layers.16.self_attn.beacon_v_proj.bias": "model-00002-of-00004.safetensors",
|
163 |
+
"model.layers.16.self_attn.beacon_v_proj.weight": "model-00002-of-00004.safetensors",
|
164 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
165 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
166 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
167 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
168 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
169 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
170 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
171 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
173 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
174 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
175 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
176 |
+
"model.layers.17.self_attn.beacon_k_proj.bias": "model-00002-of-00004.safetensors",
|
177 |
+
"model.layers.17.self_attn.beacon_k_proj.weight": "model-00002-of-00004.safetensors",
|
178 |
+
"model.layers.17.self_attn.beacon_q_proj.bias": "model-00002-of-00004.safetensors",
|
179 |
+
"model.layers.17.self_attn.beacon_q_proj.weight": "model-00002-of-00004.safetensors",
|
180 |
+
"model.layers.17.self_attn.beacon_v_proj.bias": "model-00002-of-00004.safetensors",
|
181 |
+
"model.layers.17.self_attn.beacon_v_proj.weight": "model-00002-of-00004.safetensors",
|
182 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
183 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
184 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
185 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
186 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
187 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
188 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
189 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
194 |
+
"model.layers.18.self_attn.beacon_k_proj.bias": "model-00003-of-00004.safetensors",
|
195 |
+
"model.layers.18.self_attn.beacon_k_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"model.layers.18.self_attn.beacon_q_proj.bias": "model-00003-of-00004.safetensors",
|
197 |
+
"model.layers.18.self_attn.beacon_q_proj.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"model.layers.18.self_attn.beacon_v_proj.bias": "model-00003-of-00004.safetensors",
|
199 |
+
"model.layers.18.self_attn.beacon_v_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
201 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
204 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
206 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
209 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
211 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"model.layers.19.self_attn.beacon_k_proj.bias": "model-00003-of-00004.safetensors",
|
213 |
+
"model.layers.19.self_attn.beacon_k_proj.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"model.layers.19.self_attn.beacon_q_proj.bias": "model-00003-of-00004.safetensors",
|
215 |
+
"model.layers.19.self_attn.beacon_q_proj.weight": "model-00003-of-00004.safetensors",
|
216 |
+
"model.layers.19.self_attn.beacon_v_proj.bias": "model-00003-of-00004.safetensors",
|
217 |
+
"model.layers.19.self_attn.beacon_v_proj.weight": "model-00003-of-00004.safetensors",
|
218 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
219 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
220 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
221 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
222 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
223 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
224 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
225 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
226 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
227 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
228 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
229 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
230 |
+
"model.layers.2.self_attn.beacon_k_proj.bias": "model-00001-of-00004.safetensors",
|
231 |
+
"model.layers.2.self_attn.beacon_k_proj.weight": "model-00001-of-00004.safetensors",
|
232 |
+
"model.layers.2.self_attn.beacon_q_proj.bias": "model-00001-of-00004.safetensors",
|
233 |
+
"model.layers.2.self_attn.beacon_q_proj.weight": "model-00001-of-00004.safetensors",
|
234 |
+
"model.layers.2.self_attn.beacon_v_proj.bias": "model-00001-of-00004.safetensors",
|
235 |
+
"model.layers.2.self_attn.beacon_v_proj.weight": "model-00001-of-00004.safetensors",
|
236 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
237 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
238 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
239 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
240 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
241 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
242 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
243 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
244 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
245 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
246 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
247 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
248 |
+
"model.layers.20.self_attn.beacon_k_proj.bias": "model-00003-of-00004.safetensors",
|
249 |
+
"model.layers.20.self_attn.beacon_k_proj.weight": "model-00003-of-00004.safetensors",
|
250 |
+
"model.layers.20.self_attn.beacon_q_proj.bias": "model-00003-of-00004.safetensors",
|
251 |
+
"model.layers.20.self_attn.beacon_q_proj.weight": "model-00003-of-00004.safetensors",
|
252 |
+
"model.layers.20.self_attn.beacon_v_proj.bias": "model-00003-of-00004.safetensors",
|
253 |
+
"model.layers.20.self_attn.beacon_v_proj.weight": "model-00003-of-00004.safetensors",
|
254 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
255 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
256 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
257 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
258 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
259 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
260 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
261 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
262 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
263 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
264 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
265 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
266 |
+
"model.layers.21.self_attn.beacon_k_proj.bias": "model-00003-of-00004.safetensors",
|
267 |
+
"model.layers.21.self_attn.beacon_k_proj.weight": "model-00003-of-00004.safetensors",
|
268 |
+
"model.layers.21.self_attn.beacon_q_proj.bias": "model-00003-of-00004.safetensors",
|
269 |
+
"model.layers.21.self_attn.beacon_q_proj.weight": "model-00003-of-00004.safetensors",
|
270 |
+
"model.layers.21.self_attn.beacon_v_proj.bias": "model-00003-of-00004.safetensors",
|
271 |
+
"model.layers.21.self_attn.beacon_v_proj.weight": "model-00003-of-00004.safetensors",
|
272 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
273 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
274 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
275 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
276 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
277 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
278 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
279 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
280 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
281 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
282 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
283 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
284 |
+
"model.layers.22.self_attn.beacon_k_proj.bias": "model-00003-of-00004.safetensors",
|
285 |
+
"model.layers.22.self_attn.beacon_k_proj.weight": "model-00003-of-00004.safetensors",
|
286 |
+
"model.layers.22.self_attn.beacon_q_proj.bias": "model-00003-of-00004.safetensors",
|
287 |
+
"model.layers.22.self_attn.beacon_q_proj.weight": "model-00003-of-00004.safetensors",
|
288 |
+
"model.layers.22.self_attn.beacon_v_proj.bias": "model-00003-of-00004.safetensors",
|
289 |
+
"model.layers.22.self_attn.beacon_v_proj.weight": "model-00003-of-00004.safetensors",
|
290 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
291 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
292 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
293 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
294 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
295 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
296 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
297 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
298 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
299 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
300 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
301 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
302 |
+
"model.layers.23.self_attn.beacon_k_proj.bias": "model-00003-of-00004.safetensors",
|
303 |
+
"model.layers.23.self_attn.beacon_k_proj.weight": "model-00003-of-00004.safetensors",
|
304 |
+
"model.layers.23.self_attn.beacon_q_proj.bias": "model-00003-of-00004.safetensors",
|
305 |
+
"model.layers.23.self_attn.beacon_q_proj.weight": "model-00003-of-00004.safetensors",
|
306 |
+
"model.layers.23.self_attn.beacon_v_proj.bias": "model-00003-of-00004.safetensors",
|
307 |
+
"model.layers.23.self_attn.beacon_v_proj.weight": "model-00003-of-00004.safetensors",
|
308 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
309 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
310 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
311 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
312 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
313 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
314 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
315 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
316 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
317 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
318 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
319 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
320 |
+
"model.layers.24.self_attn.beacon_k_proj.bias": "model-00003-of-00004.safetensors",
|
321 |
+
"model.layers.24.self_attn.beacon_k_proj.weight": "model-00003-of-00004.safetensors",
|
322 |
+
"model.layers.24.self_attn.beacon_q_proj.bias": "model-00003-of-00004.safetensors",
|
323 |
+
"model.layers.24.self_attn.beacon_q_proj.weight": "model-00003-of-00004.safetensors",
|
324 |
+
"model.layers.24.self_attn.beacon_v_proj.bias": "model-00003-of-00004.safetensors",
|
325 |
+
"model.layers.24.self_attn.beacon_v_proj.weight": "model-00003-of-00004.safetensors",
|
326 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
327 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
328 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
329 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
330 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
331 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
332 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
333 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
334 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
335 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
336 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
337 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
338 |
+
"model.layers.25.self_attn.beacon_k_proj.bias": "model-00003-of-00004.safetensors",
|
339 |
+
"model.layers.25.self_attn.beacon_k_proj.weight": "model-00003-of-00004.safetensors",
|
340 |
+
"model.layers.25.self_attn.beacon_q_proj.bias": "model-00003-of-00004.safetensors",
|
341 |
+
"model.layers.25.self_attn.beacon_q_proj.weight": "model-00003-of-00004.safetensors",
|
342 |
+
"model.layers.25.self_attn.beacon_v_proj.bias": "model-00003-of-00004.safetensors",
|
343 |
+
"model.layers.25.self_attn.beacon_v_proj.weight": "model-00003-of-00004.safetensors",
|
344 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
345 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
346 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
347 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
348 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
349 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
350 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
351 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
352 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
353 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
354 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
355 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
356 |
+
"model.layers.26.self_attn.beacon_k_proj.bias": "model-00003-of-00004.safetensors",
|
357 |
+
"model.layers.26.self_attn.beacon_k_proj.weight": "model-00003-of-00004.safetensors",
|
358 |
+
"model.layers.26.self_attn.beacon_q_proj.bias": "model-00003-of-00004.safetensors",
|
359 |
+
"model.layers.26.self_attn.beacon_q_proj.weight": "model-00003-of-00004.safetensors",
|
360 |
+
"model.layers.26.self_attn.beacon_v_proj.bias": "model-00003-of-00004.safetensors",
|
361 |
+
"model.layers.26.self_attn.beacon_v_proj.weight": "model-00003-of-00004.safetensors",
|
362 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
363 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
364 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
365 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
366 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
367 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
368 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
369 |
+
"model.layers.27.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
370 |
+
"model.layers.27.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
371 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
372 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
373 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
374 |
+
"model.layers.27.self_attn.beacon_k_proj.bias": "model-00003-of-00004.safetensors",
|
375 |
+
"model.layers.27.self_attn.beacon_k_proj.weight": "model-00003-of-00004.safetensors",
|
376 |
+
"model.layers.27.self_attn.beacon_q_proj.bias": "model-00003-of-00004.safetensors",
|
377 |
+
"model.layers.27.self_attn.beacon_q_proj.weight": "model-00003-of-00004.safetensors",
|
378 |
+
"model.layers.27.self_attn.beacon_v_proj.bias": "model-00003-of-00004.safetensors",
|
379 |
+
"model.layers.27.self_attn.beacon_v_proj.weight": "model-00003-of-00004.safetensors",
|
380 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
381 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
382 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
383 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
384 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
385 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
386 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
387 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
388 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
389 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
390 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
391 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
392 |
+
"model.layers.3.self_attn.beacon_k_proj.bias": "model-00001-of-00004.safetensors",
|
393 |
+
"model.layers.3.self_attn.beacon_k_proj.weight": "model-00001-of-00004.safetensors",
|
394 |
+
"model.layers.3.self_attn.beacon_q_proj.bias": "model-00001-of-00004.safetensors",
|
395 |
+
"model.layers.3.self_attn.beacon_q_proj.weight": "model-00001-of-00004.safetensors",
|
396 |
+
"model.layers.3.self_attn.beacon_v_proj.bias": "model-00001-of-00004.safetensors",
|
397 |
+
"model.layers.3.self_attn.beacon_v_proj.weight": "model-00001-of-00004.safetensors",
|
398 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
399 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
400 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
401 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
402 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
403 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
404 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
405 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
406 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
407 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
408 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
409 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
410 |
+
"model.layers.4.self_attn.beacon_k_proj.bias": "model-00001-of-00004.safetensors",
|
411 |
+
"model.layers.4.self_attn.beacon_k_proj.weight": "model-00001-of-00004.safetensors",
|
412 |
+
"model.layers.4.self_attn.beacon_q_proj.bias": "model-00001-of-00004.safetensors",
|
413 |
+
"model.layers.4.self_attn.beacon_q_proj.weight": "model-00001-of-00004.safetensors",
|
414 |
+
"model.layers.4.self_attn.beacon_v_proj.bias": "model-00001-of-00004.safetensors",
|
415 |
+
"model.layers.4.self_attn.beacon_v_proj.weight": "model-00001-of-00004.safetensors",
|
416 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
417 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
418 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
419 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
420 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
421 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
422 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
423 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
424 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
425 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
426 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
427 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
428 |
+
"model.layers.5.self_attn.beacon_k_proj.bias": "model-00001-of-00004.safetensors",
|
429 |
+
"model.layers.5.self_attn.beacon_k_proj.weight": "model-00001-of-00004.safetensors",
|
430 |
+
"model.layers.5.self_attn.beacon_q_proj.bias": "model-00001-of-00004.safetensors",
|
431 |
+
"model.layers.5.self_attn.beacon_q_proj.weight": "model-00001-of-00004.safetensors",
|
432 |
+
"model.layers.5.self_attn.beacon_v_proj.bias": "model-00001-of-00004.safetensors",
|
433 |
+
"model.layers.5.self_attn.beacon_v_proj.weight": "model-00001-of-00004.safetensors",
|
434 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
435 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
436 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
437 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
438 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
439 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
440 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
441 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
442 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
443 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
444 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
445 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
446 |
+
"model.layers.6.self_attn.beacon_k_proj.bias": "model-00001-of-00004.safetensors",
|
447 |
+
"model.layers.6.self_attn.beacon_k_proj.weight": "model-00001-of-00004.safetensors",
|
448 |
+
"model.layers.6.self_attn.beacon_q_proj.bias": "model-00001-of-00004.safetensors",
|
449 |
+
"model.layers.6.self_attn.beacon_q_proj.weight": "model-00001-of-00004.safetensors",
|
450 |
+
"model.layers.6.self_attn.beacon_v_proj.bias": "model-00001-of-00004.safetensors",
|
451 |
+
"model.layers.6.self_attn.beacon_v_proj.weight": "model-00001-of-00004.safetensors",
|
452 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
453 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
454 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
455 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
456 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
457 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
458 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
459 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
460 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
461 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
462 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
463 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
464 |
+
"model.layers.7.self_attn.beacon_k_proj.bias": "model-00001-of-00004.safetensors",
|
465 |
+
"model.layers.7.self_attn.beacon_k_proj.weight": "model-00001-of-00004.safetensors",
|
466 |
+
"model.layers.7.self_attn.beacon_q_proj.bias": "model-00001-of-00004.safetensors",
|
467 |
+
"model.layers.7.self_attn.beacon_q_proj.weight": "model-00001-of-00004.safetensors",
|
468 |
+
"model.layers.7.self_attn.beacon_v_proj.bias": "model-00001-of-00004.safetensors",
|
469 |
+
"model.layers.7.self_attn.beacon_v_proj.weight": "model-00001-of-00004.safetensors",
|
470 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
471 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
472 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
473 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
474 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
475 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
476 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
477 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
478 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
479 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
480 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
481 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
482 |
+
"model.layers.8.self_attn.beacon_k_proj.bias": "model-00002-of-00004.safetensors",
|
483 |
+
"model.layers.8.self_attn.beacon_k_proj.weight": "model-00002-of-00004.safetensors",
|
484 |
+
"model.layers.8.self_attn.beacon_q_proj.bias": "model-00002-of-00004.safetensors",
|
485 |
+
"model.layers.8.self_attn.beacon_q_proj.weight": "model-00002-of-00004.safetensors",
|
486 |
+
"model.layers.8.self_attn.beacon_v_proj.bias": "model-00002-of-00004.safetensors",
|
487 |
+
"model.layers.8.self_attn.beacon_v_proj.weight": "model-00002-of-00004.safetensors",
|
488 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
489 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
490 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
491 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
492 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
493 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
494 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
495 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
496 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
497 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
498 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
499 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
500 |
+
"model.layers.9.self_attn.beacon_k_proj.bias": "model-00002-of-00004.safetensors",
|
501 |
+
"model.layers.9.self_attn.beacon_k_proj.weight": "model-00002-of-00004.safetensors",
|
502 |
+
"model.layers.9.self_attn.beacon_q_proj.bias": "model-00002-of-00004.safetensors",
|
503 |
+
"model.layers.9.self_attn.beacon_q_proj.weight": "model-00002-of-00004.safetensors",
|
504 |
+
"model.layers.9.self_attn.beacon_v_proj.bias": "model-00002-of-00004.safetensors",
|
505 |
+
"model.layers.9.self_attn.beacon_v_proj.weight": "model-00002-of-00004.safetensors",
|
506 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
507 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
508 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
509 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
510 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
511 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
512 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
513 |
+
"model.norm.weight": "model-00004-of-00004.safetensors"
|
514 |
+
}
|
515 |
+
}
|
model_args.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"model_cache_dir": null, "dataset_cache_dir": null, "data_root": "/data/long-llm", "train_data": ["/share/qhj/rags/data/long_context/train/0830.all.30k.jsonl"], "eval_data": null, "model_name_or_path": "/share/qhj/Activation-Beacon/outputs/beacon-qwen2-full_coverage-interleave-2048_2048-2,4,8,16,32-step_random-qkv-redpajama/checkpoint-11436", "padding_side": "left", "no_use_fast": false, "access_token": null, "attn_impl": "flash_attention_2", "max_length": 40000, "chat_template": "qwen", "max_position_embeddings": null, "mistral_sliding_window": null, "rope_theta": null, "rope_method": null, "rope_factor": 1.0, "lora": null, "lora_unload": true, "load_in_4_bit": false, "dtype": "bf16", "device_map": null, "batch_size": 1, "cpu": false, "enable_tp": false, "enable_vllm": false, "vllm_mem": 0.9, "vllm_tp": 1, "vllm_len": null, "vllm_disable_ar": false, "enable_beacon": true, "beacon_window": 2048, "beacon_stride": 2048, "beacon_attn": "full-coverage", "beacon_ratio": [2, 4, 8], "beacon_ratio_mix": "step-random", "beacon_param": ["q", "k", "v"], "beacon_embed_init": "eos", "beacon_sink_size": 0, "beacon_attend_prev": true, "beacon_pos": "interleave", "beacon_parallel_window": null, "retrieval_method": null, "retrieval_topk": null, "retrieval_key_length": null, "max_new_tokens": null, "do_sample": null, "temperature": null, "top_p": null}
|
modeling_beacon.py
ADDED
@@ -0,0 +1,1143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import time
|
4 |
+
import numpy as np
|
5 |
+
import torch.distributed as dist
|
6 |
+
from copy import deepcopy
|
7 |
+
from transformers.utils import logging
|
8 |
+
from transformers import AutoTokenizer
|
9 |
+
from itertools import cycle
|
10 |
+
from typing import List
|
11 |
+
|
12 |
+
logger = logging.get_logger(__name__)
|
13 |
+
|
14 |
+
|
15 |
+
class Memory(torch.nn.Module):
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
model_config,
|
19 |
+
k_seq_dim:int=2,
|
20 |
+
v_seq_dim:int=2,
|
21 |
+
):
|
22 |
+
"""Setup necessary attributes."""
|
23 |
+
super().__init__()
|
24 |
+
|
25 |
+
self.config = model_config
|
26 |
+
|
27 |
+
# initialize necessary parameters
|
28 |
+
self.k_seq_dim = k_seq_dim
|
29 |
+
self.v_seq_dim = v_seq_dim
|
30 |
+
self.rng = np.random.default_rng(42)
|
31 |
+
|
32 |
+
self._post_validation()
|
33 |
+
self.reset()
|
34 |
+
|
35 |
+
@property
|
36 |
+
def beacon_token(self):
|
37 |
+
return self.config.vocab_size
|
38 |
+
|
39 |
+
def _post_validation(self, verbose=True):
|
40 |
+
assert self.config.beacon_window >= self.config.beacon_stride, f"Make sure the beacon_window {self.config.beacon_window} >= beacon_stride {self.config.beacon_stride}!"
|
41 |
+
for ratio in self.config.beacon_ratio:
|
42 |
+
assert ratio >= 0, f"Make sure all beacon ratios are greater than or equal to 0, found {self.config.beacon_ratio}!"
|
43 |
+
assert self.config.beacon_attn in ["segmentation", "step-expansion", "full-coverage"], f"beacon_attn {self.config.beacon_attn} not implemented!"
|
44 |
+
assert self.config.beacon_ratio_mix in ["instance-random", "step-random", "sequence"] or "adapt-" in self.config.beacon_ratio_mix, f"beacon_ratio_mix {self.config.beacon_ratio_mix} not implemented!"
|
45 |
+
# assert self.config.beacon_pos in ["append", "interleave"], f"beacon_pos {self.config.beacon_pos} not implemented!"
|
46 |
+
if self.config.beacon_pos == "interleave":
|
47 |
+
assert self.config.beacon_window == self.config.beacon_stride, f"Make sure the beacon_window equals to beacon_stride when using interleaving mode."
|
48 |
+
if self.config.beacon_parallel_window > 1:
|
49 |
+
assert self.config._attn_implementation != "flash_attention_2", f"Currently parallel window does not support flash_attention_2!"
|
50 |
+
|
51 |
+
self._cpu = torch.device("cpu")
|
52 |
+
|
53 |
+
if verbose:
|
54 |
+
info = f"applying activation beacon on {self.config.beacon_param} (the beacon embedding is initialized from {'bos' if self.config.beacon_embed_init == 'bos' else 'eos'} embedding, the beacon tokens are positioned with '{self.config.beacon_pos}' method), with window size {self.config.beacon_window}, stride {self.config.beacon_stride}, {self.config.beacon_attn} attention{' (attending to previous beacons)' if self.config.beacon_attend_prev else ' (no attending to previous beacons)'}, sink size {self.config.beacon_sink_size}, compression ratio {self.config.beacon_ratio} (mixed by {self.config.beacon_ratio_mix})..."
|
55 |
+
logger.info(info)
|
56 |
+
|
57 |
+
def set(self, verbose=True, **kwargs):
|
58 |
+
"""
|
59 |
+
Set attributes out of the constructor.
|
60 |
+
"""
|
61 |
+
for k, v in kwargs.items():
|
62 |
+
setattr(self.config, k, v)
|
63 |
+
self._post_validation(verbose=verbose)
|
64 |
+
|
65 |
+
def reset(self, **kwargs):
|
66 |
+
"""Initialize attributes for a new sequence."""
|
67 |
+
# the cursor pointing to the start of the current window
|
68 |
+
self.start_idx = 0
|
69 |
+
# the cursor pointing to the end of the current window
|
70 |
+
self.end_idx = 0
|
71 |
+
# the beacon sizes of all strides
|
72 |
+
self.all_beacon_sizes = []
|
73 |
+
# the loss per batch
|
74 |
+
self.batch_loss = None
|
75 |
+
# the valid token number per batch
|
76 |
+
self.valid_token_num = None
|
77 |
+
# the step index for processing the input_ids
|
78 |
+
self.step_idx = 0
|
79 |
+
# used in set_compression_ratio
|
80 |
+
self.compression_ratio = None
|
81 |
+
# the previous inputs is a full window or not, defaults to True
|
82 |
+
self.is_full_window = True
|
83 |
+
# the number of raw activations to preserve in update_memory (only useful when beacon_stride < beacon_window)
|
84 |
+
self.raw_size_to_cache = 0
|
85 |
+
|
86 |
+
# the number of tokens in previous stride that should be compressed by the upcoming beacon
|
87 |
+
self.interleave_remainder = 0
|
88 |
+
# compression ratio for the unfinished window
|
89 |
+
self.interleave_compression_ratio = None
|
90 |
+
self.beacon_indices = None
|
91 |
+
|
92 |
+
self.all_input_ids = None
|
93 |
+
self.all_attention_mask = None
|
94 |
+
self.all_labels = None
|
95 |
+
|
96 |
+
# NOTE: will be reset in prepare()
|
97 |
+
self.beacon_skip_first = None
|
98 |
+
self.beacon_skip_last = None
|
99 |
+
|
100 |
+
# the attention sink activations
|
101 |
+
self.sink_activations = [(None, None) for _ in range(self.config.num_hidden_layers)]
|
102 |
+
# the beacon activations
|
103 |
+
self.beacon_activations = [(None, None) for _ in range(self.config.num_hidden_layers)]
|
104 |
+
# the raw activations of recent tokens
|
105 |
+
self.raw_activations = [(None, None) for _ in range(self.config.num_hidden_layers)]
|
106 |
+
|
107 |
+
# NOTE: in case we want to resume the memory from a particular state
|
108 |
+
for k, v in kwargs.items():
|
109 |
+
# NOTE: deepcopy to untie the memory state and the model memory
|
110 |
+
setattr(self, deepcopy(k), deepcopy(v))
|
111 |
+
|
112 |
+
def export(self):
|
113 |
+
"""Export all necessary attributes of the memory module."""
|
114 |
+
return {
|
115 |
+
"start_idx": self.start_idx,
|
116 |
+
"end_idx": self.end_idx,
|
117 |
+
"all_beacon_sizes": self.all_beacon_sizes,
|
118 |
+
"batch_loss": self.batch_loss,
|
119 |
+
"valid_token_num": self.valid_token_num,
|
120 |
+
"step_idx": self.step_idx,
|
121 |
+
"compression_ratio": self.compression_ratio,
|
122 |
+
"is_full_window": self.is_full_window,
|
123 |
+
"raw_size_to_cache": self.raw_size_to_cache,
|
124 |
+
"interleave_remainder": self.interleave_remainder,
|
125 |
+
"interleave_compression_ratio": self.interleave_compression_ratio,
|
126 |
+
"beacon_indices": self.beacon_indices,
|
127 |
+
"all_input_ids": self.all_input_ids,
|
128 |
+
"all_attention_mask": self.all_attention_mask,
|
129 |
+
"all_labels": self.all_labels,
|
130 |
+
"beacon_skip_first": self.beacon_skip_first,
|
131 |
+
"beacon_skip_last": self.beacon_skip_last,
|
132 |
+
# NOTE: deepcopy to untie the memory state and the model memory
|
133 |
+
"sink_activations": deepcopy(self.sink_activations),
|
134 |
+
"beacon_activations": deepcopy(self.beacon_activations),
|
135 |
+
"raw_activations": deepcopy(self.raw_activations),
|
136 |
+
}
|
137 |
+
|
138 |
+
@property
|
139 |
+
def all_sequence_length(self):
|
140 |
+
if self.all_input_ids is None:
|
141 |
+
return 0
|
142 |
+
else:
|
143 |
+
return self.all_input_ids.shape[1]
|
144 |
+
|
145 |
+
@property
|
146 |
+
def batch_size(self):
|
147 |
+
if self.all_input_ids is None:
|
148 |
+
return 0
|
149 |
+
else:
|
150 |
+
return self.all_input_ids.shape[0]
|
151 |
+
|
152 |
+
@property
|
153 |
+
def finish(self):
|
154 |
+
is_finish = self.end_idx == self.all_sequence_length
|
155 |
+
return is_finish
|
156 |
+
|
157 |
+
@property
|
158 |
+
def dtype(self):
|
159 |
+
return self.config.torch_dtype
|
160 |
+
|
161 |
+
@property
|
162 |
+
def min_value(self):
|
163 |
+
return torch.finfo(self.dtype).min
|
164 |
+
|
165 |
+
@property
|
166 |
+
def max_position_embeddings(self):
|
167 |
+
max_position_embeddings = self.config.max_position_embeddings
|
168 |
+
if getattr(self.config, "rope_scaling", None) is not None:
|
169 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
170 |
+
max_position_embeddings = max_position_embeddings * scaling_factor
|
171 |
+
return max_position_embeddings
|
172 |
+
|
173 |
+
@property
|
174 |
+
def beacon_window(self):
|
175 |
+
if (
|
176 |
+
self.beacon_skip_last is not None
|
177 |
+
and self.start_idx < self.beacon_skip_last
|
178 |
+
and self.start_idx + self.config.beacon_window > self.beacon_skip_last
|
179 |
+
):
|
180 |
+
return self.beacon_skip_last - self.start_idx
|
181 |
+
else:
|
182 |
+
return self.config.beacon_window
|
183 |
+
|
184 |
+
@property
|
185 |
+
def beacon_stride(self):
|
186 |
+
if (
|
187 |
+
self.beacon_skip_last is not None
|
188 |
+
and self.start_idx < self.beacon_skip_last
|
189 |
+
and self.start_idx + self.config.beacon_window > self.beacon_skip_last
|
190 |
+
):
|
191 |
+
return self.beacon_skip_last - self.start_idx
|
192 |
+
else:
|
193 |
+
return self.config.beacon_stride
|
194 |
+
|
195 |
+
def get_memory_size(self):
|
196 |
+
"""
|
197 |
+
Sink memory size, beacon memory size and raw memory size.
|
198 |
+
"""
|
199 |
+
sink_memory_size = 0
|
200 |
+
beacon_memory_size = 0
|
201 |
+
raw_memory_size = 0
|
202 |
+
if self.sink_activations[0][0] is not None:
|
203 |
+
sink_memory_size += self.sink_activations[0][0].shape[self.k_seq_dim]
|
204 |
+
if self.beacon_activations[0][0] is not None:
|
205 |
+
beacon_memory_size += self.beacon_activations[0][0].shape[self.k_seq_dim]
|
206 |
+
if self.raw_activations[0][0] is not None:
|
207 |
+
raw_memory_size += self.raw_activations[0][0].shape[self.k_seq_dim]
|
208 |
+
return sink_memory_size, beacon_memory_size, raw_memory_size
|
209 |
+
|
210 |
+
def prepare(self, input_ids, attention_mask, labels, skip_first=None, skip_last=None):
|
211 |
+
"""
|
212 |
+
Prepare inputs for the model. These inputs belong to the same sequence.
|
213 |
+
"""
|
214 |
+
# assert input_ids.shape[0] == 1, "Make sure the batch size is 1!"
|
215 |
+
# assert attention_mask is None or (attention_mask == 1).all(), "Make sure there is no padding!"
|
216 |
+
|
217 |
+
self._device = input_ids.device
|
218 |
+
|
219 |
+
# accumulate input_ids
|
220 |
+
if self.all_input_ids is None:
|
221 |
+
self.all_input_ids = input_ids.cpu()
|
222 |
+
else:
|
223 |
+
self.all_input_ids = torch.cat([self.all_input_ids, input_ids.cpu()], dim=1)
|
224 |
+
|
225 |
+
# accumulate attention_mask
|
226 |
+
if attention_mask is None:
|
227 |
+
attention_mask = torch.ones_like(input_ids, device=torch.device("cpu"))
|
228 |
+
if self.all_attention_mask is None:
|
229 |
+
self.all_attention_mask = attention_mask.cpu()
|
230 |
+
else:
|
231 |
+
self.all_attention_mask = torch.cat([self.all_attention_mask, attention_mask.cpu()], dim=1)
|
232 |
+
|
233 |
+
# accumulate labels if exisits
|
234 |
+
if labels is not None:
|
235 |
+
# rotate labels in advance so that the loss of the last token is not ignored in every window
|
236 |
+
labels = torch.cat([labels[:, 1:].cpu(), torch.tensor([-100]).expand(labels.shape[0], 1)], dim=1)
|
237 |
+
if self.all_labels is None:
|
238 |
+
self.all_labels = labels.cpu()
|
239 |
+
else:
|
240 |
+
self.all_labels = torch.cat([self.all_labels, labels], dim=1)
|
241 |
+
assert self.all_input_ids.shape[1] == self.all_labels.shape[1], f"Found inconsistent all_input_ids {self.all_input_ids.shape} and all_labels {self.all_labels.shape}!"
|
242 |
+
|
243 |
+
# how many tokens to skip at the beginning of the sequence? (They will be packed in a single chunk and processed by the model, after which their activations will be cached in sink_activations.)
|
244 |
+
if skip_first is not None:
|
245 |
+
assert self.config.beacon_parallel_window == 1, f"Make sure the parallel window is set to 1 when using beacon_skip!"
|
246 |
+
assert self.config.beacon_window == self.config.beacon_stride, f"Make sure the beacon_window equals to beacon_stride when using beacon_skip."
|
247 |
+
assert self.config.beacon_sink_size == 0, f"Make sure the beacon_sink_size is set to 0 when using beacon_skip!"
|
248 |
+
# stop compression after how many tokens
|
249 |
+
if skip_last is not None:
|
250 |
+
skip_first = skip_first if skip_first is not None else 0
|
251 |
+
# assert (skip_last - skip_first) % self.config.beacon_window == 0, f"skip_last ({skip_last}) - skip_first ({skip_first}) = {skip_last - skip_first} is not divisible by window size {self.config.beacon_window}"
|
252 |
+
assert self.config.beacon_sink_size == 0, "Make sure the beacon_sink_size is zero when using skip_last!"
|
253 |
+
self.beacon_skip_first = skip_first
|
254 |
+
self.beacon_skip_last = skip_last
|
255 |
+
|
256 |
+
def set_compression_ratio(self, start_idx, end_idx):
|
257 |
+
"""Choose a condensing ratio from self.config.beacon_ratio"""
|
258 |
+
def filter_ratio(ratios, stride):
|
259 |
+
valid_ratios = []
|
260 |
+
for ratio in ratios:
|
261 |
+
# stride must be bigger than condensing ratio because we there must be at least one beacon
|
262 |
+
if stride < ratio:
|
263 |
+
continue
|
264 |
+
# the stride must be evenly divisible by condensing ratio
|
265 |
+
if ratio > 0 and (stride % ratio) != 0:
|
266 |
+
continue
|
267 |
+
# when training, ratio=0 is valid if previous windows contain beacon or later windows contain beacon
|
268 |
+
if ratio == 0 and self.training:
|
269 |
+
previous_has_zero = -1 in self.all_beacon_sizes
|
270 |
+
following_has_nonzero = (start_idx + stride + self.beacon_window) <= self.all_sequence_length
|
271 |
+
if previous_has_zero or (not following_has_nonzero):
|
272 |
+
continue
|
273 |
+
valid_ratios.append(ratio)
|
274 |
+
assert len(valid_ratios), f"Cannot find valid condensing ratio (among {ratios}) for stride {stride}!"
|
275 |
+
return valid_ratios
|
276 |
+
|
277 |
+
def get_max_length(ratios):
|
278 |
+
max_lengths = []
|
279 |
+
for compression_ratio in ratios:
|
280 |
+
if compression_ratio > 0:
|
281 |
+
# NOTE: here we must use the scaled position embeddings
|
282 |
+
max_lengths.append((self.max_position_embeddings - self.beacon_window) * compression_ratio + self.beacon_window)
|
283 |
+
else:
|
284 |
+
max_lengths.append(self.max_position_embeddings)
|
285 |
+
return max_lengths
|
286 |
+
|
287 |
+
if len(self.config.beacon_ratio) == 1:
|
288 |
+
return self.config.beacon_ratio[0]
|
289 |
+
|
290 |
+
ratio_mix = self.config.beacon_ratio_mix
|
291 |
+
|
292 |
+
beacon_ratio = filter_ratio(self.config.beacon_ratio, self.beacon_stride)
|
293 |
+
|
294 |
+
if ratio_mix == "instance-random":
|
295 |
+
if self.compression_ratio is None:
|
296 |
+
beacon_ratio = self.rng.choice(beacon_ratio).tolist()
|
297 |
+
self.compression_ratio = beacon_ratio
|
298 |
+
else:
|
299 |
+
beacon_ratio = self.compression_ratio
|
300 |
+
|
301 |
+
elif ratio_mix == "step-random":
|
302 |
+
beacon_ratio = self.rng.choice(beacon_ratio).tolist()
|
303 |
+
|
304 |
+
elif ratio_mix == "sequence":
|
305 |
+
if self.compression_ratio is None:
|
306 |
+
self.compression_ratio = cycle(beacon_ratio)
|
307 |
+
beacon_ratio = next(self.compression_ratio)
|
308 |
+
|
309 |
+
elif "adapt" in ratio_mix:
|
310 |
+
if self.compression_ratio is None:
|
311 |
+
future_length = int(ratio_mix.split("-")[1])
|
312 |
+
sequence_length = self.all_input_ids.shape[1] + future_length
|
313 |
+
max_lengths = get_max_length(beacon_ratio)
|
314 |
+
# ascendingly sort the max lengths
|
315 |
+
valid_max_lengths_and_indices = [x for x in enumerate(max_lengths) if x[1] >= sequence_length]
|
316 |
+
if len(valid_max_lengths_and_indices):
|
317 |
+
minimum_length_index = min(valid_max_lengths_and_indices, key=lambda x: x[1])[0]
|
318 |
+
# use the minimal possible length for this sequence (the smallest fold ratio)
|
319 |
+
beacon_ratio = beacon_ratio[minimum_length_index]
|
320 |
+
else:
|
321 |
+
beacon_ratio = max(beacon_ratio)
|
322 |
+
# logger.warning(f"Failed to find valid fold window and size for sequence length {sequence_length}, as the maximum theoretical length is {max(max_lengths)}. Fall back to use the maximum one: {beacon_ratio}.")
|
323 |
+
self.compression_ratio = beacon_ratio
|
324 |
+
else:
|
325 |
+
beacon_ratio = self.compression_ratio
|
326 |
+
|
327 |
+
return beacon_ratio
|
328 |
+
|
329 |
+
def step(self):
|
330 |
+
# parallel does not support stride < window
|
331 |
+
# parallel does not support non-compression
|
332 |
+
# the input_ids is not long enough for parallel
|
333 |
+
if (
|
334 |
+
self.config.beacon_parallel_window > 1
|
335 |
+
and self.config.beacon_stride == self.config.beacon_window
|
336 |
+
and 0 not in self.config.beacon_ratio
|
337 |
+
and self.all_input_ids[:, self.end_idx:].shape[1] >= self.config.beacon_parallel_window * self.config.beacon_window
|
338 |
+
):
|
339 |
+
input_ids_list = []
|
340 |
+
attention_mask_list = []
|
341 |
+
position_ids_list = []
|
342 |
+
labels_list = []
|
343 |
+
|
344 |
+
beacon_size_list = []
|
345 |
+
beacon_indices_list = []
|
346 |
+
|
347 |
+
for i in range(self.config.beacon_parallel_window):
|
348 |
+
if i == 0:
|
349 |
+
_input_ids, _attention_mask, _position_ids, _past_key_values, _labels = self._step()
|
350 |
+
else:
|
351 |
+
_input_ids, _attention_mask, _position_ids, _past_key_values, _labels = self._step(ignore_memory=True)
|
352 |
+
|
353 |
+
input_ids_list.append(_input_ids)
|
354 |
+
attention_mask_list.append(_attention_mask)
|
355 |
+
position_ids_list.append(_position_ids)
|
356 |
+
labels_list.append(_labels)
|
357 |
+
beacon_size_list.append(_past_key_values[0][2])
|
358 |
+
beacon_indices_list.append(_past_key_values[0][3])
|
359 |
+
|
360 |
+
if i == 0:
|
361 |
+
past_key_values = _past_key_values
|
362 |
+
if past_key_values[0][0] is None:
|
363 |
+
mem_size = 0
|
364 |
+
else:
|
365 |
+
mem_size = past_key_values[0][0].shape[self.k_seq_dim]
|
366 |
+
|
367 |
+
else:
|
368 |
+
# no memory
|
369 |
+
assert _past_key_values[0][0] is None
|
370 |
+
|
371 |
+
batch_size = self.all_input_ids.shape[0]
|
372 |
+
# NOTE: we do not need to repliace beacon tokens for the last window
|
373 |
+
seq_len = sum(x.shape[1] for x in input_ids_list) + sum(beacon_size_list) - beacon_size_list[-1]
|
374 |
+
|
375 |
+
input_ids = _input_ids.new_zeros((batch_size, seq_len)) + self.beacon_token
|
376 |
+
# all 0
|
377 |
+
attention_mask = _attention_mask.new_zeros((batch_size, 1, seq_len, mem_size + seq_len)) + self.min_value
|
378 |
+
position_ids = torch.arange(mem_size + seq_len, device=self._device).expand(batch_size, mem_size + seq_len)
|
379 |
+
# 2 indicates the beacon token is used for replication
|
380 |
+
beacon_indices = beacon_indices_list[0].new_zeros(seq_len) + 2
|
381 |
+
if _labels is not None:
|
382 |
+
# -100 because no loss on beacon tokens
|
383 |
+
labels = _labels.new_zeros((batch_size, seq_len)) - 100
|
384 |
+
else:
|
385 |
+
labels = None
|
386 |
+
|
387 |
+
start_idx = 0
|
388 |
+
position_offset = mem_size
|
389 |
+
for i in range(self.config.beacon_parallel_window):
|
390 |
+
beacon_size = beacon_size_list[i]
|
391 |
+
|
392 |
+
# populate input_ids
|
393 |
+
_input_ids = input_ids_list[i]
|
394 |
+
cur_seq_len = _input_ids.shape[1]
|
395 |
+
input_ids[:, start_idx: start_idx + cur_seq_len] = _input_ids
|
396 |
+
|
397 |
+
# populate attention_mask and position_ids
|
398 |
+
_attention_mask = attention_mask_list[i]
|
399 |
+
_position_ids = position_ids_list[i]
|
400 |
+
# the attention mask in the first window contains the mask for memory, which is redundant here
|
401 |
+
if i == 0:
|
402 |
+
_attention_mask = _attention_mask[:, :, :, mem_size:]
|
403 |
+
_position_ids = _position_ids[:, mem_size:] - mem_size
|
404 |
+
|
405 |
+
attention_mask[:, :, start_idx: start_idx + cur_seq_len, mem_size + start_idx: mem_size + start_idx + cur_seq_len] = _attention_mask
|
406 |
+
position_ids[:, mem_size + start_idx: mem_size + start_idx + cur_seq_len] = _position_ids + position_offset
|
407 |
+
|
408 |
+
# populate beacon_indices
|
409 |
+
_beacon_indices = beacon_indices_list[i]
|
410 |
+
beacon_indices[start_idx: start_idx + cur_seq_len] = _beacon_indices
|
411 |
+
|
412 |
+
# populate labels
|
413 |
+
if labels is not None:
|
414 |
+
# populate labels
|
415 |
+
_labels = labels_list[i]
|
416 |
+
labels[:, start_idx: start_idx + cur_seq_len] = _labels
|
417 |
+
|
418 |
+
# NOTE: when there is sink activations, we need to bias the position_ids for the first window
|
419 |
+
if i == 0 and self.config.beacon_sink_size > 0 and self.sink_activations[0][0] is None:
|
420 |
+
position_offset += 1
|
421 |
+
|
422 |
+
# modify the attention and position for replicated beacon tokens
|
423 |
+
if i != self.config.beacon_parallel_window - 1:
|
424 |
+
replicate_beacon_row_start = start_idx + cur_seq_len
|
425 |
+
replicate_beacon_col_start = mem_size + start_idx + cur_seq_len
|
426 |
+
# NOTE: any attention mask is okay for replicated beacon tokens, but for convenience we use the causal mask
|
427 |
+
attention_mask[:, :, replicate_beacon_row_start: replicate_beacon_row_start + beacon_size, replicate_beacon_col_start: replicate_beacon_col_start + beacon_size] = _attention_mask.new_full((beacon_size, beacon_size), self.min_value).triu(1)
|
428 |
+
# NOTE: all future tokens can attend to the replicated beacon tokens
|
429 |
+
attention_mask[:, :, replicate_beacon_row_start + beacon_size:, replicate_beacon_col_start: replicate_beacon_col_start + beacon_size] = 0
|
430 |
+
# NOTE: the position of replicated beacon tokens start from 0
|
431 |
+
position_ids[:, mem_size + start_idx + cur_seq_len: mem_size + start_idx + cur_seq_len + beacon_size] = torch.arange(position_offset, position_offset + beacon_size, device=_input_ids.device)[None:]
|
432 |
+
|
433 |
+
start_idx += cur_seq_len + beacon_size
|
434 |
+
position_offset += beacon_size
|
435 |
+
|
436 |
+
# the memory is visible to all subsequent tokens
|
437 |
+
attention_mask[:, :, :, :max(mem_size, self.config.beacon_sink_size)] = 0
|
438 |
+
|
439 |
+
# NOTE: modify beacon_indices
|
440 |
+
for i, (key, value, _, _) in enumerate(past_key_values):
|
441 |
+
past_key_values[i] = (key, value, sum(beacon_size_list), beacon_indices)
|
442 |
+
|
443 |
+
# NOTE: update _beacon_indices so that the next-token logits can be properly sliced out in self.output()
|
444 |
+
self.beacon_indices = beacon_indices
|
445 |
+
|
446 |
+
return input_ids, attention_mask, position_ids, past_key_values, labels
|
447 |
+
|
448 |
+
else:
|
449 |
+
return self._step()
|
450 |
+
|
451 |
+
def _step(self, ignore_memory=False):
|
452 |
+
"""
|
453 |
+
Yield inputs for the current sliding window, including the input_ids, attention_mask, position_ids, and past_key_values.
|
454 |
+
"""
|
455 |
+
#============================================#
|
456 |
+
# Check whether the inputs fulfills a window.
|
457 |
+
#============================================#
|
458 |
+
|
459 |
+
# the starting position of the current window w.r.t. the start of the current input sequence
|
460 |
+
start_idx = self.start_idx
|
461 |
+
# the end position of the current window w.r.t. the start of the current input sequence
|
462 |
+
end_idx = start_idx + self.beacon_window
|
463 |
+
# indicates if the current window is completely filled by raw activations and new tokens
|
464 |
+
# we only append beacon tokens for full windows
|
465 |
+
if end_idx > self.all_sequence_length:
|
466 |
+
# the input is shorter than the initial window size
|
467 |
+
end_idx = self.all_sequence_length
|
468 |
+
is_full_window = False
|
469 |
+
else:
|
470 |
+
is_full_window = True
|
471 |
+
|
472 |
+
# NOTE: in training, the entire sequence is input to the model at once
|
473 |
+
# In the last window, we do not need to append beacons because they will not be used at all
|
474 |
+
if self.training and end_idx == self.all_sequence_length:
|
475 |
+
next_start_idx = start_idx
|
476 |
+
is_full_window = False
|
477 |
+
raw_size_to_cache = -1
|
478 |
+
beacon_size = 0
|
479 |
+
compression_ratio = -1
|
480 |
+
|
481 |
+
# NOTE: we do not compress the beacon_skip_first tokens at the beginning of the sequence
|
482 |
+
elif self.step_idx == 0 and self.beacon_skip_first is not None:
|
483 |
+
end_idx = start_idx + self.beacon_skip_first
|
484 |
+
assert end_idx <= self.all_sequence_length
|
485 |
+
next_start_idx = end_idx
|
486 |
+
is_full_window = True
|
487 |
+
raw_size_to_cache = -1
|
488 |
+
beacon_size = 0
|
489 |
+
compression_ratio = -1
|
490 |
+
|
491 |
+
# NOTE: we do not compress tokens after beacon_skip_last tokens
|
492 |
+
elif self.beacon_skip_last is not None and start_idx >= self.beacon_skip_last:
|
493 |
+
end_idx = min(start_idx + self.beacon_window, self.all_sequence_length)
|
494 |
+
next_start_idx = end_idx
|
495 |
+
is_full_window = False
|
496 |
+
raw_size_to_cache = -1
|
497 |
+
beacon_size = 0
|
498 |
+
compression_ratio = -1
|
499 |
+
|
500 |
+
else:
|
501 |
+
#============================================#
|
502 |
+
# Set compression ratio
|
503 |
+
#============================================#
|
504 |
+
if self.config.beacon_pos == "append":
|
505 |
+
if is_full_window:
|
506 |
+
# determine compression ratio for the current window
|
507 |
+
beacon_stride = self.beacon_stride
|
508 |
+
compression_ratio = self.set_compression_ratio(start_idx=start_idx, end_idx=end_idx)
|
509 |
+
|
510 |
+
if compression_ratio > 0:
|
511 |
+
# the stride must be evenly divisible by compression_ratio
|
512 |
+
beacon_size = beacon_stride // compression_ratio
|
513 |
+
else:
|
514 |
+
# the raw activations are used as beacon activations
|
515 |
+
beacon_size = -1
|
516 |
+
|
517 |
+
# forward start_idx and end_idx
|
518 |
+
next_start_idx = start_idx + beacon_stride
|
519 |
+
# how many raw activations to save
|
520 |
+
raw_size_to_cache = end_idx - next_start_idx
|
521 |
+
else:
|
522 |
+
# no stride because the sequence has finished
|
523 |
+
next_start_idx = start_idx
|
524 |
+
# cache all raw activations
|
525 |
+
raw_size_to_cache = -1
|
526 |
+
beacon_size = 0
|
527 |
+
compression_ratio = 0
|
528 |
+
|
529 |
+
elif self.config.beacon_pos == "interleave":
|
530 |
+
# the number of raw tokens in the input_ids
|
531 |
+
input_size = end_idx - self.end_idx
|
532 |
+
# set compression ratio once the previous window has finished, otherwise, reuse the interleave_compression_ratio if the input belongs to an unfinished window
|
533 |
+
if self.is_full_window:
|
534 |
+
compression_ratio = self.set_compression_ratio(start_idx=start_idx, end_idx=end_idx)
|
535 |
+
self.interleave_compression_ratio = compression_ratio
|
536 |
+
else:
|
537 |
+
compression_ratio = self.interleave_compression_ratio
|
538 |
+
|
539 |
+
# the beacon size is non-zero even if the window is not full
|
540 |
+
if compression_ratio > 0:
|
541 |
+
# this number of beacon tokens will be inserted among the raw tokens
|
542 |
+
beacon_size = (input_size + self.interleave_remainder) // compression_ratio
|
543 |
+
else:
|
544 |
+
# the raw activations are used as beacon activations
|
545 |
+
beacon_size = -1
|
546 |
+
|
547 |
+
if is_full_window:
|
548 |
+
# move forward one window
|
549 |
+
next_start_idx = start_idx + self.beacon_stride
|
550 |
+
# no save raw activations
|
551 |
+
raw_size_to_cache = 0
|
552 |
+
else:
|
553 |
+
# no stride because the sequence has not finished
|
554 |
+
next_start_idx = start_idx
|
555 |
+
# cache all recent raw activations to be used in the next window
|
556 |
+
raw_size_to_cache = -1
|
557 |
+
|
558 |
+
#============================================#
|
559 |
+
# Slice out input_ids (raw tokens in the current window)
|
560 |
+
#============================================#
|
561 |
+
input_ids = self.all_input_ids[:, self.end_idx: end_idx].to(self._device)
|
562 |
+
attention_mask = self.all_attention_mask[:, self.end_idx: end_idx].to(self._device)
|
563 |
+
if self.all_labels is not None:
|
564 |
+
labels = self.all_labels[:, self.end_idx: end_idx].to(self._device)
|
565 |
+
else:
|
566 |
+
labels = None
|
567 |
+
batch_size = input_ids.shape[0]
|
568 |
+
|
569 |
+
#============================================#
|
570 |
+
# Insert beacon tokens if necessary.
|
571 |
+
#============================================#
|
572 |
+
# t1 = time.time()
|
573 |
+
|
574 |
+
if self.config.beacon_pos == "append":
|
575 |
+
# append beacons if necessary
|
576 |
+
if is_full_window and beacon_size > 0:
|
577 |
+
input_ids = torch.cat([input_ids, input_ids.new_full((batch_size, beacon_size), self.beacon_token)], dim=1)
|
578 |
+
# NOTE: prepend 1 to attention_mask because we have past_key_values
|
579 |
+
attention_mask = torch.cat([attention_mask, attention_mask.new_ones(batch_size, beacon_size)], dim=1)
|
580 |
+
if labels is not None:
|
581 |
+
labels = torch.cat([labels, labels.new_zeros(batch_size, beacon_size) - 100], dim=1)
|
582 |
+
|
583 |
+
elif self.config.beacon_pos == "interleave":
|
584 |
+
input_len = input_ids.shape[1]
|
585 |
+
if beacon_size > 0:
|
586 |
+
# insert beacon tokens in between raw tokens
|
587 |
+
input_ids_with_beacons = input_ids.new_full((input_ids.shape[0], input_len + beacon_size), self.beacon_token)
|
588 |
+
raw_token_indices = torch.arange(input_ids_with_beacons.shape[1], device=input_ids.device)
|
589 |
+
interleave_start_idx = compression_ratio - self.interleave_remainder
|
590 |
+
raw_token_indices = raw_token_indices[raw_token_indices % (compression_ratio + 1) != interleave_start_idx].unsqueeze(0).expand_as(input_ids)
|
591 |
+
input_ids_with_beacons = input_ids_with_beacons.scatter(dim=1, index=raw_token_indices, src=input_ids)
|
592 |
+
input_ids = input_ids_with_beacons
|
593 |
+
# attention mask
|
594 |
+
attention_mask_with_beacons = attention_mask.new_full((attention_mask.shape[0], attention_mask.shape[1] + beacon_size), 1)
|
595 |
+
attention_mask_with_beacons = attention_mask_with_beacons.scatter(dim=1, index=raw_token_indices, src=attention_mask)
|
596 |
+
attention_mask = attention_mask_with_beacons
|
597 |
+
# labels
|
598 |
+
if labels is not None:
|
599 |
+
labels_with_beacons = labels.new_full((labels.shape[0], labels.shape[1] + beacon_size), -100)
|
600 |
+
labels_with_beacons = labels_with_beacons.scatter(dim=1, index=raw_token_indices, src=labels)
|
601 |
+
labels = labels_with_beacons
|
602 |
+
|
603 |
+
if compression_ratio > 0:
|
604 |
+
# update the reminder
|
605 |
+
self.interleave_remainder = (input_len + self.interleave_remainder) % compression_ratio
|
606 |
+
|
607 |
+
# NOTE: skip computing loss in the very first window because the beacon tokens will be used in the next window
|
608 |
+
if self.training and self.step_idx == 0 and not (self.config.beacon_pos == 'interleave' and self.config.beacon_attn == 'full-coverage'):
|
609 |
+
labels[:] = -100
|
610 |
+
|
611 |
+
# t2 = time.time()
|
612 |
+
|
613 |
+
#============================================#
|
614 |
+
# Prepare beacon_indices for interleave beacon_pos, a boolean mask where True indicates the beacon tokens.
|
615 |
+
# The mask is applied on the inputs of the entire window, including the cached activations and the input_ids.
|
616 |
+
#============================================#
|
617 |
+
beacon_indices = (input_ids[0] == self.beacon_token).long()
|
618 |
+
if self.is_full_window:
|
619 |
+
self.beacon_indices = torch.tensor([], dtype=torch.long, device=input_ids.device)
|
620 |
+
# the beacon_indices always tracks the beacon tokens in both the cached activations and the input_ids
|
621 |
+
beacon_indices = torch.cat([self.beacon_indices, beacon_indices])
|
622 |
+
# record the beacon_indices for the next window
|
623 |
+
self.beacon_indices = beacon_indices
|
624 |
+
if is_full_window and beacon_size == -1:
|
625 |
+
# NOTE: the first beacon_stride raw tokens serve as beacon tokens
|
626 |
+
# we use -1 to indicate these raw tokens, so that the attention mask and position ids will not be modified
|
627 |
+
beacon_indices[:self.beacon_stride] = -1
|
628 |
+
|
629 |
+
# t3 = time.time()
|
630 |
+
|
631 |
+
#============================================#
|
632 |
+
# Prepare past_key_values.
|
633 |
+
# beacon_size: how many beacon tokens are there in the input_ids
|
634 |
+
# beacon_indices: the boolean mask for the entire window where True indicates the beacon tokens (for append, the beacon_indices corresponds to input_ids, while for 'interleave', the beacon_indices corresponds to the entire window including both the input_ids and the cached activations)
|
635 |
+
#============================================#
|
636 |
+
past_key_values = []
|
637 |
+
for layer_idx in range(self.config.num_hidden_layers):
|
638 |
+
if ignore_memory:
|
639 |
+
key, value = None, None
|
640 |
+
else:
|
641 |
+
sink_key, sink_value = self.sink_activations[layer_idx]
|
642 |
+
beacon_key, beacon_value = self.beacon_activations[layer_idx]
|
643 |
+
raw_key, raw_value = self.raw_activations[layer_idx]
|
644 |
+
|
645 |
+
key = cat_tensor([
|
646 |
+
sink_key, beacon_key, raw_key,
|
647 |
+
], dim=self.k_seq_dim)
|
648 |
+
value = cat_tensor([
|
649 |
+
sink_value, beacon_value, raw_value,
|
650 |
+
], dim=self.v_seq_dim)
|
651 |
+
|
652 |
+
layer_past_key_values = (key, value, beacon_size, beacon_indices)
|
653 |
+
past_key_values.append(layer_past_key_values)
|
654 |
+
|
655 |
+
# t4 = time.time()
|
656 |
+
|
657 |
+
#============================================#
|
658 |
+
# Prepare attention_mask and position_ids.
|
659 |
+
#============================================#
|
660 |
+
first_key = past_key_values[0][0]
|
661 |
+
mem_size = first_key.shape[self.k_seq_dim] if first_key is not None else 0
|
662 |
+
if mem_size > 0:
|
663 |
+
attention_mask = torch.cat([attention_mask.new_ones(batch_size, mem_size), attention_mask], dim=1)
|
664 |
+
|
665 |
+
input_length = input_ids.shape[1]
|
666 |
+
position_ids = torch.arange(attention_mask.shape[-1], dtype=torch.long, device=self._device).repeat(batch_size, 1)
|
667 |
+
|
668 |
+
if self.config._attn_implementation == "flash_attention_2":
|
669 |
+
assert self.config.beacon_attn == "full-coverage", f"Make sure to set beacon_attn='full-coverage' when using flash attention! Found {self.config.beacon_attn}."
|
670 |
+
if 0 in attention_mask:
|
671 |
+
pass
|
672 |
+
else:
|
673 |
+
attention_mask = None
|
674 |
+
elif self.config._attn_implementation == "sdpa" and self.config.beacon_pos == "append" and beacon_size <= 0 and (input_length == 1 or mem_size == 0):
|
675 |
+
attention_mask = None
|
676 |
+
else:
|
677 |
+
attention_mask, position_ids = self._make_4d_attention_mask_and_position_ids(
|
678 |
+
attention_mask,
|
679 |
+
position_ids,
|
680 |
+
mem_size,
|
681 |
+
beacon_size,
|
682 |
+
compression_ratio,
|
683 |
+
)
|
684 |
+
|
685 |
+
# t5 = time.time()
|
686 |
+
|
687 |
+
# print(f"prepare inputs {t2-t1}, prepare indices {t3-t2}, prepare memory {t4-t3}, prepare attention mask {t5-t4}")
|
688 |
+
|
689 |
+
#============================================#
|
690 |
+
# Update necessary attributes.
|
691 |
+
#============================================#
|
692 |
+
# keep track of whether the current inputs is a full_window
|
693 |
+
self.is_full_window = is_full_window
|
694 |
+
# keep track of the raw_size_to_cache
|
695 |
+
self.raw_size_to_cache = raw_size_to_cache
|
696 |
+
# involked in self.output()
|
697 |
+
self.all_beacon_sizes.append(beacon_size)
|
698 |
+
# update start_idx and end_idx
|
699 |
+
# NOTE: the update of start_idx will influence self.beacon_window and self.beacon_stride in case self.beacon_skip_last is not None
|
700 |
+
# Therefore, we must make sure all calls to self.beacon_window and self.beacon_stride happen before the update of start_idx
|
701 |
+
self.start_idx = next_start_idx
|
702 |
+
self.end_idx = end_idx
|
703 |
+
self.step_idx += 1
|
704 |
+
|
705 |
+
# print(f"start_idx: {start_idx}")
|
706 |
+
# print(f"next_start_idx: {next_start_idx}")
|
707 |
+
# print(f"beacon_size: {beacon_size}")
|
708 |
+
# print(f"raw_size_to_cache: {raw_size_to_cache}")
|
709 |
+
# print(f"interleave_remainder:{self.interleave_remainder}")
|
710 |
+
# print(f"input_ids: {input_ids}")
|
711 |
+
# print(f"input_len: {input_len}")
|
712 |
+
# print(f"beacon_indices: {beacon_indices}")
|
713 |
+
# print(f"position_ids: {position_ids}")
|
714 |
+
# print(f"attention_mask:\n{attention_mask == 0}")
|
715 |
+
# x = input()
|
716 |
+
# if x == "s":
|
717 |
+
# return
|
718 |
+
|
719 |
+
return input_ids, attention_mask, position_ids, past_key_values, labels
|
720 |
+
|
721 |
+
def update_memory(self, past_key_values):
|
722 |
+
"""
|
723 |
+
Accumulate beacon activations and raw activations.
|
724 |
+
"""
|
725 |
+
for layer_idx, (key, value, beacon_size, beacon_indices) in enumerate(past_key_values):
|
726 |
+
# NOTE: the past_key_values are incrementally returned (only the new keys and values are returned)
|
727 |
+
previous_raw_key, previous_raw_value = self.raw_activations[layer_idx]
|
728 |
+
|
729 |
+
if self.beacon_skip_first is not None and self.sink_activations[layer_idx][0] is None:
|
730 |
+
assert key.shape[self.k_seq_dim] == self.beacon_skip_first
|
731 |
+
assert value.shape[self.k_seq_dim] == self.beacon_skip_first
|
732 |
+
self.sink_activations[layer_idx] = [
|
733 |
+
key,
|
734 |
+
value,
|
735 |
+
]
|
736 |
+
# NOTE: no need to update raw activations and beacon activations as all activations are kept as sink activations
|
737 |
+
continue
|
738 |
+
|
739 |
+
if self.beacon_activations[layer_idx][0] is None and self.config.beacon_sink_size > 0:
|
740 |
+
# save the sink activations
|
741 |
+
# NOTE: we do not slice the key/value activations, which may cause duplication when beacon_ratio=-1 for the first window, but it's okay
|
742 |
+
self.sink_activations[layer_idx] = [
|
743 |
+
slice_tensor(key, end=self.config.beacon_sink_size, dim=self.k_seq_dim),
|
744 |
+
slice_tensor(value, end=self.config.beacon_sink_size, dim=self.v_seq_dim),
|
745 |
+
]
|
746 |
+
|
747 |
+
if not self.is_full_window:
|
748 |
+
# this means the current input does not fulfill a window
|
749 |
+
# thus, the key and value are all raw activations, and we accumulate them until the window is fulfilled
|
750 |
+
assert self.raw_size_to_cache == -1
|
751 |
+
raw_key = cat_tensor([
|
752 |
+
previous_raw_key,
|
753 |
+
key
|
754 |
+
], dim=self.k_seq_dim)
|
755 |
+
raw_value = cat_tensor([
|
756 |
+
previous_raw_value,
|
757 |
+
value
|
758 |
+
], dim=self.v_seq_dim)
|
759 |
+
self.raw_activations[layer_idx] = (raw_key, raw_value)
|
760 |
+
|
761 |
+
else:
|
762 |
+
# NOTE: use the correct previous_beacon_key and value!
|
763 |
+
previous_beacon_key, previous_beacon_value = self.beacon_activations[layer_idx]
|
764 |
+
|
765 |
+
beacon_key, beacon_value, raw_key, raw_value = self._extract_beacon_and_raw_memory(
|
766 |
+
key,
|
767 |
+
value,
|
768 |
+
previous_beacon_key,
|
769 |
+
previous_beacon_value,
|
770 |
+
previous_raw_key,
|
771 |
+
previous_raw_value,
|
772 |
+
beacon_indices,
|
773 |
+
)
|
774 |
+
|
775 |
+
self.beacon_activations[layer_idx] = (beacon_key, beacon_value)
|
776 |
+
self.raw_activations[layer_idx] = (raw_key, raw_value)
|
777 |
+
|
778 |
+
def update_loss(self, batch_loss, valid_token_num):
|
779 |
+
"""
|
780 |
+
Accumulate loss for later perplexity computation and backward pass.
|
781 |
+
"""
|
782 |
+
if self.batch_loss is None:
|
783 |
+
# NOTE: multiply valid_token_num because batch_loss is divided by it in advance
|
784 |
+
self.batch_loss = batch_loss * valid_token_num
|
785 |
+
self.valid_token_num = valid_token_num
|
786 |
+
else:
|
787 |
+
# NOTE: avoid in-place operations, otherwise there will be gradient errors in training
|
788 |
+
self.batch_loss = self.batch_loss + batch_loss * valid_token_num
|
789 |
+
self.valid_token_num = self.valid_token_num + valid_token_num
|
790 |
+
|
791 |
+
def output(self, model_outputs):
|
792 |
+
"""
|
793 |
+
Override loss with accumulated loss. Update the next-token logits.
|
794 |
+
"""
|
795 |
+
# override loss
|
796 |
+
if self.batch_loss is not None:
|
797 |
+
# here the batch_loss is the summation of all token losses in each element
|
798 |
+
loss = self.batch_loss.sum() / self.valid_token_num.sum()
|
799 |
+
|
800 |
+
# NOTE: prevent nan
|
801 |
+
batch_loss = self.batch_loss / self.valid_token_num
|
802 |
+
if (self.valid_token_num == 0).any():
|
803 |
+
batch_loss = batch_loss.masked_fill(self.valid_token_num == 0, 0.)
|
804 |
+
|
805 |
+
# NOTE: we must use dict to override values, otherwise trainer cannot find loss
|
806 |
+
model_outputs["loss"] = loss
|
807 |
+
model_outputs["batch_loss"] = batch_loss
|
808 |
+
|
809 |
+
# override last_hidden_states (used in generation)
|
810 |
+
beacon_size = self.all_beacon_sizes[-1]
|
811 |
+
# remove logits corresponding to beacon tokens
|
812 |
+
if beacon_size > 0:
|
813 |
+
logits = model_outputs["logits"]
|
814 |
+
beacon_indices = self.beacon_indices[-logits.shape[1]:]
|
815 |
+
model_outputs["logits"] = logits[:, beacon_indices == 0]
|
816 |
+
|
817 |
+
return model_outputs
|
818 |
+
|
819 |
+
def _make_4d_attention_mask_and_position_ids(
|
820 |
+
self,
|
821 |
+
attention_mask,
|
822 |
+
position_ids,
|
823 |
+
mem_size,
|
824 |
+
beacon_size,
|
825 |
+
compression_ratio,
|
826 |
+
):
|
827 |
+
"""
|
828 |
+
Convert attention_mask into causal 4D attention_mask (batch_size, head_num, query_len, key_len).
|
829 |
+
"""
|
830 |
+
tgt_size = attention_mask.size(-1) - mem_size
|
831 |
+
dtype = self.dtype
|
832 |
+
min_value = self.min_value
|
833 |
+
device = self._device
|
834 |
+
batch_size, src_size = attention_mask.size()
|
835 |
+
|
836 |
+
# square for memory, and lower triangular for input_ids
|
837 |
+
causal_mask = torch.full((tgt_size, tgt_size), min_value, device=device, dtype=dtype)
|
838 |
+
mask_cond = torch.arange(causal_mask.size(-1), device=device)
|
839 |
+
causal_mask.masked_fill_(mask_cond < (mask_cond + 1).view(causal_mask.size(-1), -1), 0)
|
840 |
+
causal_mask = torch.cat([torch.zeros(tgt_size, mem_size, dtype=dtype, device=device), causal_mask], dim=-1)
|
841 |
+
causal_mask = causal_mask[None, None, ...].expand(batch_size, 1, tgt_size, src_size)
|
842 |
+
# 1 for non-padding tokens
|
843 |
+
expand_mask = attention_mask[:, None, None, :].expand(batch_size, 1, tgt_size, src_size)
|
844 |
+
invert_mask = 1.0 - expand_mask
|
845 |
+
invert_mask.masked_fill_(invert_mask.bool(), min_value)
|
846 |
+
|
847 |
+
attention_mask = causal_mask.masked_fill(invert_mask.bool(), min_value)
|
848 |
+
|
849 |
+
if self.config.beacon_attn == "step-expansion":
|
850 |
+
# each beacon can attend to one more sub-interval than its predecessor
|
851 |
+
|
852 |
+
if self.config.beacon_pos == "append" and beacon_size > 0:
|
853 |
+
window_size = self.beacon_window
|
854 |
+
window_size_with_beacon = window_size + beacon_size
|
855 |
+
beacon_start_idx = -beacon_size
|
856 |
+
# batch_size, head_num, window_size
|
857 |
+
reference_attention_mask = attention_mask[..., -beacon_size - 1, -window_size_with_beacon: -beacon_size]
|
858 |
+
|
859 |
+
# compression_ratio, 2 * compression_ratio, ..., beacon_size * compression_ratio
|
860 |
+
beacon_arange = torch.arange(1, beacon_size + 1, device=device) * compression_ratio
|
861 |
+
# 0, 1, 2, ..., window_size - 1
|
862 |
+
ordinal_arange = torch.arange(window_size, device=device)
|
863 |
+
# beacon_size, window_size
|
864 |
+
valid_pos = ordinal_arange.expand(beacon_size, window_size) < beacon_arange.unsqueeze(-1)
|
865 |
+
# beacon_size, window_size
|
866 |
+
ordinal_attention_mask = torch.where(valid_pos, 0, min_value)
|
867 |
+
# NOTE: add reference attention_mask so that padding tokens are considered
|
868 |
+
ordinal_attention_mask = ordinal_attention_mask[None, None, ...] + reference_attention_mask.unsqueeze(-2)
|
869 |
+
|
870 |
+
if self.config.beacon_attend_prev:
|
871 |
+
beacon_attention_mask = attention_mask.new_full((beacon_size, beacon_size), min_value).triu(1)
|
872 |
+
# the beacon token is next to the last ordinal token it attends to
|
873 |
+
ordinal_position_ids = position_ids[:, -window_size_with_beacon: -beacon_size]
|
874 |
+
beacon_position_ids = ordinal_position_ids[:, compression_ratio - 1::compression_ratio] + torch.arange(1, beacon_size + 1, device=device)[None]
|
875 |
+
position_ids[:, beacon_start_idx:] = beacon_position_ids
|
876 |
+
else:
|
877 |
+
beacon_attention_mask = attention_mask.new_full((beacon_size, beacon_size), min_value).fill_diagonal_(0)
|
878 |
+
# the beacon token is next to the last ordinal token it attends to
|
879 |
+
ordinal_position_ids = position_ids[:, -window_size_with_beacon: -beacon_size]
|
880 |
+
beacon_position_ids = ordinal_position_ids[:, compression_ratio - 1::compression_ratio] + 1
|
881 |
+
position_ids[:, beacon_start_idx:] = beacon_position_ids
|
882 |
+
|
883 |
+
attention_mask[..., beacon_start_idx:, -window_size_with_beacon: -beacon_size] = ordinal_attention_mask
|
884 |
+
attention_mask[..., beacon_start_idx:, beacon_start_idx:] = beacon_attention_mask
|
885 |
+
|
886 |
+
# NOTE: the attention mask should be modified when there is beacon token within the window, not in the input_ids
|
887 |
+
elif self.config.beacon_pos == "interleave" and (self.beacon_indices == 1).any():
|
888 |
+
assert self.config.beacon_attend_prev == False, f"Make sure beacon_attend_prev is False if using 'interleave' beacon pos!"
|
889 |
+
|
890 |
+
beacon_indices = self.beacon_indices
|
891 |
+
|
892 |
+
cur_position_ids = position_ids[:, -len(beacon_indices):]
|
893 |
+
base_position = cur_position_ids[:, 0] - 1
|
894 |
+
# NOTE: alternate position so that the position of raw tokens are consistent
|
895 |
+
position_template = cur_position_ids.new_ones(cur_position_ids.shape)
|
896 |
+
position_template[:, compression_ratio + 1::compression_ratio + 1] = 0
|
897 |
+
cur_position_ids = base_position + position_template.cumsum(-1)
|
898 |
+
position_ids[:, -len(beacon_indices):] = cur_position_ids
|
899 |
+
|
900 |
+
cur_input_length = len(beacon_indices)
|
901 |
+
cur_attention_mask = attention_mask[..., -cur_input_length:, -cur_input_length:]
|
902 |
+
# mask all beacon columns
|
903 |
+
cur_attention_mask[..., beacon_indices] = min_value
|
904 |
+
# beacon tokens can attend to themselves
|
905 |
+
input_ids_attention_mask = cur_attention_mask[..., -tgt_size:, -tgt_size:]
|
906 |
+
input_ids_attention_mask[..., range(tgt_size), range(tgt_size)] = 0
|
907 |
+
|
908 |
+
elif self.config.beacon_attn == "segmentation":
|
909 |
+
# each beacon can attend to its corresponding sub-interval
|
910 |
+
|
911 |
+
if self.config.beacon_pos == "append" and beacon_size > 0:
|
912 |
+
window_size = self.beacon_window
|
913 |
+
window_size_with_beacon = window_size + beacon_size
|
914 |
+
beacon_start_idx = -beacon_size
|
915 |
+
# batch_size, head_num, window_size
|
916 |
+
reference_attention_mask = attention_mask[..., -beacon_size - 1, -window_size_with_beacon: -beacon_size]
|
917 |
+
|
918 |
+
# beacon_size, compression_ratio
|
919 |
+
indices = torch.arange(compression_ratio * beacon_size, device=device).view(beacon_size, -1)
|
920 |
+
# beacon_size, window_size
|
921 |
+
ordinal_attention_mask = attention_mask.new_full((beacon_size, window_size), min_value)
|
922 |
+
ordinal_attention_mask.scatter_(dim=-1, index=indices, value=0)
|
923 |
+
|
924 |
+
# NOTE: add reference attention_mask so that padding tokens are considered
|
925 |
+
ordinal_attention_mask = ordinal_attention_mask[None, None, ...] + reference_attention_mask.unsqueeze(-2)
|
926 |
+
|
927 |
+
if self.config.beacon_attend_prev:
|
928 |
+
beacon_attention_mask = attention_mask.new_full((beacon_size, beacon_size), min_value).triu(1)
|
929 |
+
# the beacon token is next to the last ordinal token it attends to
|
930 |
+
beacon_position_ids = position_ids.new_full(beacon_size, fill_value=compression_ratio + mem_size)
|
931 |
+
beacon_position_ids = beacon_position_ids + torch.arange(beacon_size)
|
932 |
+
position_ids[:, beacon_start_idx:] = beacon_position_ids
|
933 |
+
else:
|
934 |
+
beacon_attention_mask = attention_mask.new_full((beacon_size, beacon_size), min_value).fill_diagonal_(0)
|
935 |
+
# the beacon token is next to the last ordinal token it attends to
|
936 |
+
beacon_position_ids = position_ids.new_full(beacon_size, fill_value=compression_ratio + mem_size)
|
937 |
+
position_ids[:, beacon_start_idx:] = beacon_position_ids
|
938 |
+
|
939 |
+
attention_mask[..., beacon_start_idx:, -window_size_with_beacon: -beacon_size] = ordinal_attention_mask
|
940 |
+
attention_mask[..., beacon_start_idx:, beacon_start_idx:] = beacon_attention_mask
|
941 |
+
# beacons of different ratios are blind to others
|
942 |
+
attention_mask[..., beacon_start_idx:, -beacon_size: beacon_start_idx] = min_value
|
943 |
+
|
944 |
+
elif self.config.beacon_pos == "interleave":
|
945 |
+
raise NotImplementedError
|
946 |
+
|
947 |
+
elif self.config.beacon_attn == "full-coverage":
|
948 |
+
pass
|
949 |
+
|
950 |
+
return attention_mask, position_ids
|
951 |
+
|
952 |
+
def _extract_beacon_and_raw_memory(
|
953 |
+
self,
|
954 |
+
key,
|
955 |
+
value,
|
956 |
+
previous_beacon_key,
|
957 |
+
previous_beacon_value,
|
958 |
+
previous_raw_key,
|
959 |
+
previous_raw_value,
|
960 |
+
beacon_indices,
|
961 |
+
):
|
962 |
+
"""Extract beacon and raw memory from the returned key and value when the window is full."""
|
963 |
+
key = cat_tensor([
|
964 |
+
previous_raw_key,
|
965 |
+
key
|
966 |
+
], dim=self.k_seq_dim)
|
967 |
+
value = cat_tensor([
|
968 |
+
previous_raw_value,
|
969 |
+
value
|
970 |
+
], dim=self.v_seq_dim)
|
971 |
+
|
972 |
+
# NOTE: we use magic slice instead of boolean index here for efficiency
|
973 |
+
beacon_key = slice_tensor(key, index=torch.logical_or(beacon_indices == 1, beacon_indices == -1), dim=self.k_seq_dim)
|
974 |
+
beacon_value = slice_tensor(value, index=torch.logical_or(beacon_indices == 1, beacon_indices == -1), dim=self.v_seq_dim)
|
975 |
+
|
976 |
+
if self.config.beacon_accum:
|
977 |
+
beacon_key = cat_tensor([previous_beacon_key, beacon_key], dim=self.k_seq_dim)
|
978 |
+
beacon_value = cat_tensor([previous_beacon_value, beacon_value], dim=self.v_seq_dim)
|
979 |
+
|
980 |
+
if self.raw_size_to_cache > 0:
|
981 |
+
raw_key = slice_tensor(key, index=beacon_indices == 0, dim=self.k_seq_dim)
|
982 |
+
raw_key = slice_tensor(raw_key, start=-raw_size_to_cache, dim=self.k_seq_dim)
|
983 |
+
|
984 |
+
raw_value = slice_tensor(value, index=beacon_indices == 0, dim=self.v_seq_dim)
|
985 |
+
raw_value = slice_tensor(raw_value, start=-raw_size_to_cache, dim=self.v_seq_dim)
|
986 |
+
|
987 |
+
else:
|
988 |
+
raw_key = None
|
989 |
+
raw_value = None
|
990 |
+
|
991 |
+
return beacon_key, beacon_value, raw_key, raw_value
|
992 |
+
|
993 |
+
|
994 |
+
def slice_tensor(x, start=None, end=None, step=None, index=None, dim=2):
|
995 |
+
if x is None:
|
996 |
+
return None
|
997 |
+
if end == 0:
|
998 |
+
return None
|
999 |
+
if start == x.shape[dim]:
|
1000 |
+
return None
|
1001 |
+
if start is not None and start == end:
|
1002 |
+
return None
|
1003 |
+
if dim == 2:
|
1004 |
+
if index is not None:
|
1005 |
+
return x[:, :, index]
|
1006 |
+
elif start is None and end is not None:
|
1007 |
+
if step is None:
|
1008 |
+
return x[:, :, :end, ...]
|
1009 |
+
else:
|
1010 |
+
return x[:, :, :end:step, ...]
|
1011 |
+
elif start is not None and end is None:
|
1012 |
+
if step is None:
|
1013 |
+
return x[:, :, start:, ...]
|
1014 |
+
else:
|
1015 |
+
return x[:, :, start::step, ...]
|
1016 |
+
elif start is not None and end is not None:
|
1017 |
+
if step is None:
|
1018 |
+
return x[:, :, start:end, ...]
|
1019 |
+
else:
|
1020 |
+
return x[:, :, start:end:step, ...]
|
1021 |
+
elif dim == 1:
|
1022 |
+
if index is not None:
|
1023 |
+
return x[:, :, index]
|
1024 |
+
elif start is None and end is not None:
|
1025 |
+
if step is None:
|
1026 |
+
return x[:, :end, ...]
|
1027 |
+
else:
|
1028 |
+
return x[:, :end:step, ...]
|
1029 |
+
elif start is not None and end is None:
|
1030 |
+
if step is None:
|
1031 |
+
return x[:, start:, ...]
|
1032 |
+
else:
|
1033 |
+
return x[:, start::step, ...]
|
1034 |
+
elif start is not None and end is not None:
|
1035 |
+
if step is None:
|
1036 |
+
return x[:, start:end, ...]
|
1037 |
+
else:
|
1038 |
+
return x[:, start:end:step, ...]
|
1039 |
+
else:
|
1040 |
+
raise NotImplementedError
|
1041 |
+
|
1042 |
+
def cat_tensor(list_of_tensors, dim=-1):
|
1043 |
+
list_of_tensors = [t for t in list_of_tensors if t is not None]
|
1044 |
+
if len(list_of_tensors) > 1:
|
1045 |
+
result = torch.cat(list_of_tensors, dim=dim)
|
1046 |
+
elif len(list_of_tensors) == 1:
|
1047 |
+
result = list_of_tensors[0]
|
1048 |
+
else:
|
1049 |
+
result = None
|
1050 |
+
return result
|
1051 |
+
|
1052 |
+
def slice_activations(activations, start=None, end=None, k_seq_dim=2, v_seq_dim=2):
|
1053 |
+
new_activations = []
|
1054 |
+
for key, value in activations:
|
1055 |
+
new_key = slice_tensor(key, start=start, end=end, dim=k_seq_dim)
|
1056 |
+
new_value = slice_tensor(value, start=start, end=end, dim=v_seq_dim)
|
1057 |
+
new_activations.append([new_key, new_value])
|
1058 |
+
return new_activations
|
1059 |
+
|
1060 |
+
def cat_activations(list_of_activations, k_seq_dim=2, v_seq_dim=2):
|
1061 |
+
assert all(len(x) == len(list_of_activations[0]) for x in list_of_activations), f"Make sure all activations have the same number of layers! Found {[len(x) for x in list_of_activations]}."
|
1062 |
+
|
1063 |
+
new_activations = []
|
1064 |
+
for layer_idx in range(len(list_of_activations[0])):
|
1065 |
+
keys = [x[layer_idx][0] for x in list_of_activations]
|
1066 |
+
values = [x[layer_idx][1] for x in list_of_activations]
|
1067 |
+
|
1068 |
+
new_key = cat_tensor(keys, dim=k_seq_dim)
|
1069 |
+
new_value = cat_tensor(values, dim=v_seq_dim)
|
1070 |
+
new_activations.append([new_key, new_value])
|
1071 |
+
return new_activations
|
1072 |
+
|
1073 |
+
def interleave_activations(main_activations, augment_activations, main_spans, augment_spans, k_seq_dim=2, v_seq_dim=2, device=torch.device("cuda")):
|
1074 |
+
""" Interleave main_activations and augment_activations according to main_span and augment_span.
|
1075 |
+
|
1076 |
+
Args:
|
1077 |
+
main_span: a list of tuples (start_idx, end_idx). when start_idx and end_idx is None, the augment_activations will be plugged in.
|
1078 |
+
augment_span: a list of tuples (start_idx, end_idx)
|
1079 |
+
"""
|
1080 |
+
assert len(main_activations) == len(augment_activations) , f"Make sure main and augment activations have the same number of layers! Found {len(main_activations)} and {len(augment_activations)}!"
|
1081 |
+
assert sum(x[0] is None and x[1] is None for x in main_spans) == len(augment_spans), f"Make sure the number of slots for augmentation (start_idx=None and end_idx=None in main_spans) matches the number of augmentations. Found {sum(x for x in main_spans if x[0] is None and x[1] is None)} slots but {len(augment_spans)} augmentations!"
|
1082 |
+
|
1083 |
+
new_activations = []
|
1084 |
+
for layer_idx in range(len(main_activations)):
|
1085 |
+
main_key, main_value = main_activations[layer_idx]
|
1086 |
+
augment_key, augment_value = augment_activations[layer_idx]
|
1087 |
+
|
1088 |
+
sliced_keys = []
|
1089 |
+
sliced_values = []
|
1090 |
+
|
1091 |
+
augment_idx = 0
|
1092 |
+
for start, end in main_spans:
|
1093 |
+
if start is None and end is None:
|
1094 |
+
# this means the augment key/value should be plugged in
|
1095 |
+
augment_start, augment_end = augment_spans[augment_idx]
|
1096 |
+
sliced_key = slice_tensor(
|
1097 |
+
augment_key,
|
1098 |
+
start=augment_start,
|
1099 |
+
end=augment_end,
|
1100 |
+
dim=k_seq_dim
|
1101 |
+
).to(device)
|
1102 |
+
sliced_value = slice_tensor(
|
1103 |
+
augment_value,
|
1104 |
+
start=augment_start,
|
1105 |
+
end=augment_end,
|
1106 |
+
dim=v_seq_dim
|
1107 |
+
).to(device)
|
1108 |
+
|
1109 |
+
else:
|
1110 |
+
sliced_key = slice_tensor(
|
1111 |
+
main_key,
|
1112 |
+
start=start,
|
1113 |
+
end=end,
|
1114 |
+
dim=k_seq_dim
|
1115 |
+
)
|
1116 |
+
sliced_value = slice_tensor(
|
1117 |
+
main_value,
|
1118 |
+
start=start,
|
1119 |
+
end=end,
|
1120 |
+
dim=v_seq_dim
|
1121 |
+
)
|
1122 |
+
|
1123 |
+
sliced_keys.append(sliced_key)
|
1124 |
+
sliced_values.append(sliced_value)
|
1125 |
+
|
1126 |
+
new_key = cat_tensor(sliced_keys, dim=k_seq_dim)
|
1127 |
+
new_value = cat_tensor(sliced_values, dim=v_seq_dim)
|
1128 |
+
new_activations.append([new_key, new_value])
|
1129 |
+
|
1130 |
+
return new_activations
|
1131 |
+
|
1132 |
+
def softmax(x:np.ndarray, axis=-1, temperature=1):
|
1133 |
+
if isinstance(x, list):
|
1134 |
+
x = np.array(x)
|
1135 |
+
x = x / temperature
|
1136 |
+
x = x - x.max(axis=axis, keepdims=True)
|
1137 |
+
y = np.exp(x)
|
1138 |
+
return y / y.sum(axis=axis, keepdims=True)
|
1139 |
+
|
1140 |
+
def l1_norm(x):
|
1141 |
+
sum_x = sum(x)
|
1142 |
+
x = [y/sum_x for y in x]
|
1143 |
+
return x
|
modeling_qwen2.py
ADDED
@@ -0,0 +1,1309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" PyTorch Qwen2 model."""
|
21 |
+
import inspect
|
22 |
+
import math
|
23 |
+
import warnings
|
24 |
+
from typing import List, Optional, Tuple, Union
|
25 |
+
|
26 |
+
import torch
|
27 |
+
import torch.nn.functional as F
|
28 |
+
import torch.utils.checkpoint
|
29 |
+
from torch import nn
|
30 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
31 |
+
|
32 |
+
from transformers.activations import ACT2FN
|
33 |
+
from transformers.cache_utils import Cache
|
34 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
35 |
+
from transformers.modeling_utils import PreTrainedModel
|
36 |
+
from transformers.utils import (
|
37 |
+
add_start_docstrings,
|
38 |
+
add_start_docstrings_to_model_forward,
|
39 |
+
is_flash_attn_2_available,
|
40 |
+
is_flash_attn_greater_or_equal_2_10,
|
41 |
+
logging,
|
42 |
+
replace_return_docstrings,
|
43 |
+
)
|
44 |
+
from transformers.integrations import is_deepspeed_zero3_enabled
|
45 |
+
from .configuration_qwen2 import Qwen2Config
|
46 |
+
|
47 |
+
|
48 |
+
if is_flash_attn_2_available():
|
49 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
50 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
51 |
+
|
52 |
+
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
|
53 |
+
|
54 |
+
from .modeling_beacon import Memory
|
55 |
+
from .modeling_utils import optional_grad_ctx, compute_loss, get_rope, ModelOutput
|
56 |
+
|
57 |
+
|
58 |
+
logger = logging.get_logger(__name__)
|
59 |
+
|
60 |
+
|
61 |
+
_CHECKPOINT_FOR_DOC = "Qwen/Qwen2-7B-beta"
|
62 |
+
_CONFIG_FOR_DOC = "Qwen2Config"
|
63 |
+
|
64 |
+
QWEN2_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
65 |
+
"Qwen/Qwen2-7B-beta",
|
66 |
+
# See all Qwen2 models at https://huggingface.co/models?filter=qwen2
|
67 |
+
]
|
68 |
+
|
69 |
+
|
70 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
71 |
+
def _get_unpad_data(attention_mask):
|
72 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
73 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
74 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
75 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
76 |
+
return (
|
77 |
+
indices,
|
78 |
+
cu_seqlens,
|
79 |
+
max_seqlen_in_batch,
|
80 |
+
)
|
81 |
+
|
82 |
+
|
83 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Qwen2
|
84 |
+
class Qwen2RMSNorm(nn.Module):
|
85 |
+
def __init__(self, hidden_size, eps=1e-6):
|
86 |
+
"""
|
87 |
+
Qwen2RMSNorm is equivalent to T5LayerNorm
|
88 |
+
"""
|
89 |
+
super().__init__()
|
90 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
91 |
+
self.variance_epsilon = eps
|
92 |
+
|
93 |
+
def forward(self, hidden_states):
|
94 |
+
input_dtype = hidden_states.dtype
|
95 |
+
hidden_states = hidden_states.to(torch.float32)
|
96 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
97 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
98 |
+
return self.weight * hidden_states.to(input_dtype)
|
99 |
+
|
100 |
+
|
101 |
+
# Copied from transformers.models.mistral.modeling_mistral.Qwen2MLP with Qwen2->Qwen2
|
102 |
+
class Qwen2MLP(nn.Module):
|
103 |
+
def __init__(self, config):
|
104 |
+
super().__init__()
|
105 |
+
self.config = config
|
106 |
+
self.hidden_size = config.hidden_size
|
107 |
+
self.intermediate_size = config.intermediate_size
|
108 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
109 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
110 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
111 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
112 |
+
|
113 |
+
def forward(self, x):
|
114 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
115 |
+
return down_proj
|
116 |
+
|
117 |
+
|
118 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
119 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
120 |
+
"""
|
121 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
122 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
123 |
+
"""
|
124 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
125 |
+
if n_rep == 1:
|
126 |
+
return hidden_states
|
127 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
128 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
129 |
+
|
130 |
+
|
131 |
+
class Qwen2Attention(nn.Module):
|
132 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
133 |
+
|
134 |
+
def __init__(self, config: Qwen2Config, layer_idx: Optional[int] = None):
|
135 |
+
super().__init__()
|
136 |
+
self.config = config
|
137 |
+
self.layer_idx = layer_idx
|
138 |
+
if layer_idx is None:
|
139 |
+
logger.warning_once(
|
140 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
141 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
142 |
+
"when creating this class."
|
143 |
+
)
|
144 |
+
|
145 |
+
self.attention_dropout = config.attention_dropout
|
146 |
+
self.hidden_size = config.hidden_size
|
147 |
+
self.num_heads = config.num_attention_heads
|
148 |
+
self.head_dim = self.hidden_size // self.num_heads
|
149 |
+
self.num_key_value_heads = config.num_key_value_heads
|
150 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
151 |
+
self.max_position_embeddings = config.max_position_embeddings
|
152 |
+
self.rope_theta = config.rope_theta
|
153 |
+
self.is_causal = True
|
154 |
+
|
155 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
156 |
+
raise ValueError(
|
157 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
158 |
+
f" and `num_heads`: {self.num_heads})."
|
159 |
+
)
|
160 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
|
161 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
162 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
163 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
164 |
+
|
165 |
+
self.rotary_emb = get_rope(self.head_dim, config.rope_theta, config.max_position_embeddings, getattr(config, "rope_scaling", None))
|
166 |
+
|
167 |
+
# NOTE: add extra parameters for beacon tokens
|
168 |
+
# skip post initialization to speed up loading
|
169 |
+
if "q" in config.beacon_param:
|
170 |
+
self.beacon_q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=self.q_proj.bias is not None)
|
171 |
+
# NOTE: initialize the beacon parameters as zero
|
172 |
+
self.beacon_q_proj.weight.data.zero_()
|
173 |
+
self.beacon_q_proj._is_hf_initialized = True
|
174 |
+
if "k" in config.beacon_param:
|
175 |
+
self.beacon_k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=self.k_proj.bias is not None)
|
176 |
+
self.beacon_k_proj.weight.data.zero_()
|
177 |
+
self.beacon_k_proj._is_hf_initialized = True
|
178 |
+
if "v" in config.beacon_param:
|
179 |
+
self.beacon_v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=self.v_proj.bias is not None)
|
180 |
+
self.beacon_v_proj.weight.data.zero_()
|
181 |
+
self.beacon_v_proj._is_hf_initialized = True
|
182 |
+
if "o" in config.beacon_param:
|
183 |
+
self.beacon_o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=self.o_proj.bias is not None)
|
184 |
+
self.beacon_o_proj.weight.data.zero_()
|
185 |
+
self.beacon_o_proj._is_hf_initialized = True
|
186 |
+
|
187 |
+
def _init_beacon_proj(self, missing_keys):
|
188 |
+
"""Initialize the beacon projection weight with that of the ordinal projection."""
|
189 |
+
beacon_param = self.config.beacon_param
|
190 |
+
|
191 |
+
if is_deepspeed_zero3_enabled():
|
192 |
+
# FIXME: after deepspeed initialization, some weights becomes non-zero
|
193 |
+
# For Mistral, there are rows that are full of zeros
|
194 |
+
# For Mistral, there are values bigger than 1e29...
|
195 |
+
|
196 |
+
import deepspeed
|
197 |
+
if "q" in beacon_param:
|
198 |
+
params = [self.beacon_q_proj.weight, self.q_proj.weight]
|
199 |
+
if self.q_proj.bias is not None:
|
200 |
+
params.extend([self.beacon_q_proj.bias, self.q_proj.bias])
|
201 |
+
with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
|
202 |
+
# FIXME: after deepspeed initialization, some weights becomes non-zero, but there are rows that are full of zeros
|
203 |
+
if (self.beacon_q_proj.weight.sum(-1) == 0).any() or (self.beacon_q_proj.weight > 1e29).any():
|
204 |
+
self.beacon_q_proj.weight.data[:] = self.q_proj.weight.data
|
205 |
+
if self.q_proj.bias is not None:
|
206 |
+
self.beacon_q_proj.bias.data[:] = self.q_proj.bias.data
|
207 |
+
if "k" in beacon_param:
|
208 |
+
params = [self.beacon_k_proj.weight, self.k_proj.weight]
|
209 |
+
if self.k_proj.bias is not None:
|
210 |
+
params.extend([self.beacon_k_proj.bias, self.k_proj.bias])
|
211 |
+
with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
|
212 |
+
# FIXME: after deepspeed initialization, some weights becomes non-zero, but there are rows that are full of zeros
|
213 |
+
if (self.beacon_k_proj.weight.sum(-1) == 0).any() or (self.beacon_k_proj.weight > 1e29).any():
|
214 |
+
self.beacon_k_proj.weight.data[:] = self.k_proj.weight.data
|
215 |
+
if self.k_proj.bias is not None:
|
216 |
+
self.beacon_k_proj.bias.data[:] = self.k_proj.bias.data
|
217 |
+
if "v" in beacon_param:
|
218 |
+
params = [self.beacon_v_proj.weight, self.v_proj.weight]
|
219 |
+
if self.v_proj.bias is not None:
|
220 |
+
params.extend([self.beacon_v_proj.bias, self.v_proj.bias])
|
221 |
+
with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
|
222 |
+
# FIXME: after deepspeed initialization, some weights becomes non-zero, but there are rows that are full of zeros
|
223 |
+
if (self.beacon_v_proj.weight.sum(-1) == 0).any() or (self.beacon_v_proj.weight > 1e29).any():
|
224 |
+
self.beacon_v_proj.weight.data[:] = self.v_proj.weight.data
|
225 |
+
if self.v_proj.bias is not None:
|
226 |
+
self.beacon_v_proj.bias.data[:] = self.v_proj.bias.data
|
227 |
+
if "o" in beacon_param:
|
228 |
+
params = [self.beacon_o_proj.weight, self.o_proj.weight]
|
229 |
+
if self.o_proj.bias is not None:
|
230 |
+
params.extend([self.beacon_o_proj.bias, self.o_proj.bias])
|
231 |
+
with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
|
232 |
+
# FIXME: after deepspeed initialization, some weights becomes non-zero, but there are rows that are full of zeros
|
233 |
+
if (self.beacon_o_proj.weight.sum(-1) == 0).any() or (self.beacon_o_proj.weight > 1e29).any():
|
234 |
+
self.beacon_o_proj.weight.data[:] = self.o_proj.weight.data
|
235 |
+
if self.o_proj.bias is not None:
|
236 |
+
self.beacon_o_proj.bias.data[:] = self.o_proj.bias.data
|
237 |
+
else:
|
238 |
+
# only copy the value in-place, without tieing the weight
|
239 |
+
if "q" in beacon_param and any("beacon_q_proj" in missing_key for missing_key in missing_keys):
|
240 |
+
# FIXME: some beacon weights are not initialized as zero for mistral model, why?
|
241 |
+
# if (self.beacon_q_proj.weight == 0).all():
|
242 |
+
self.beacon_q_proj.weight.data[:] = self.q_proj.weight.data
|
243 |
+
if self.q_proj.bias is not None:
|
244 |
+
self.beacon_q_proj.bias.data[:] = self.q_proj.bias.data
|
245 |
+
if "k" in beacon_param and any("beacon_k_proj" in missing_key for missing_key in missing_keys):
|
246 |
+
# if (self.beacon_k_proj.weight == 0).all():
|
247 |
+
self.beacon_k_proj.weight.data[:] = self.k_proj.weight.data
|
248 |
+
if self.k_proj.bias is not None:
|
249 |
+
self.beacon_k_proj.bias.data[:] = self.k_proj.bias.data
|
250 |
+
if "v" in beacon_param and any("beacon_v_proj" in missing_key for missing_key in missing_keys):
|
251 |
+
# if (self.beacon_v_proj.weight == 0).all():
|
252 |
+
self.beacon_v_proj.weight.data[:] = self.v_proj.weight.data
|
253 |
+
if self.v_proj.bias is not None:
|
254 |
+
self.beacon_v_proj.bias.data[:] = self.v_proj.bias.data
|
255 |
+
if "o" in beacon_param and any("beacon_o_proj" in missing_key for missing_key in missing_keys):
|
256 |
+
# if (self.beacon_o_proj.weight == 0).all():
|
257 |
+
self.beacon_o_proj.weight.data[:] = self.o_proj.weight.data
|
258 |
+
if self.o_proj.bias is not None:
|
259 |
+
self.beacon_o_proj.bias.data[:] = self.o_proj.bias.data
|
260 |
+
|
261 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
262 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
263 |
+
|
264 |
+
def qkv_proj_with_beacon(self, hidden_states, beacon_size, beacon_indices):
|
265 |
+
if beacon_size > 0:
|
266 |
+
# NOTE: when beacon_pos == "interleave", the beacon_indices points to all beacon tokens in the current window (cached activations + input_ids), so we shall slice out the part corresponding to the input_ids
|
267 |
+
cur_beacon_indices = beacon_indices[-hidden_states.shape[1]:]
|
268 |
+
|
269 |
+
# NOTE: there is slight redundant computation because ordinal tokens should never be projected by beacon matrices, but we are doing this for efficiency
|
270 |
+
if "q" in self.config.beacon_param:
|
271 |
+
ordinal_query_states = self.q_proj(hidden_states)
|
272 |
+
beacon_query_states = self.beacon_q_proj(hidden_states)
|
273 |
+
query_states = torch.where((cur_beacon_indices == 0)[:, None], ordinal_query_states, beacon_query_states)
|
274 |
+
if (cur_beacon_indices == 2).any():
|
275 |
+
# beacon_indices == 2 means the beacon token is used to replicate the ones in previous window for parallel encoding
|
276 |
+
# we should slice out all beacon tokens then copy them to the replicate beacon tokens
|
277 |
+
query_states[:, cur_beacon_indices == 2] = beacon_query_states[:, cur_beacon_indices == 1][:, :(cur_beacon_indices == 2).sum()]
|
278 |
+
else:
|
279 |
+
query_states = self.q_proj(hidden_states)
|
280 |
+
|
281 |
+
if "k" in self.config.beacon_param:
|
282 |
+
ordinal_key_states = self.k_proj(hidden_states)
|
283 |
+
beacon_key_states = self.beacon_k_proj(hidden_states)
|
284 |
+
key_states = torch.where((cur_beacon_indices == 0)[:, None], ordinal_key_states, beacon_key_states)
|
285 |
+
if (cur_beacon_indices == 2).any():
|
286 |
+
# beacon_indices == 2 means the beacon token is used to replicate the ones in previous window for parallel encoding
|
287 |
+
# we should slice out all beacon tokens then copy them to the replicate beacon tokens
|
288 |
+
key_states[:, cur_beacon_indices == 2] = beacon_key_states[:, cur_beacon_indices == 1][:, :(cur_beacon_indices == 2).sum()]
|
289 |
+
else:
|
290 |
+
key_states = self.k_proj(hidden_states)
|
291 |
+
|
292 |
+
if "v" in self.config.beacon_param:
|
293 |
+
ordinal_value_states = self.v_proj(hidden_states)
|
294 |
+
beacon_value_states = self.beacon_v_proj(hidden_states)
|
295 |
+
value_states = torch.where((cur_beacon_indices == 0)[:, None], ordinal_value_states, beacon_value_states)
|
296 |
+
if (cur_beacon_indices == 2).any():
|
297 |
+
# beacon_indices == 2 means the beacon token is used to replicate the ones in previous window for parallel encoding
|
298 |
+
# we should slice out all beacon tokens then copy them to the replicate beacon tokens
|
299 |
+
value_states[:, cur_beacon_indices == 2] = beacon_value_states[:, cur_beacon_indices == 1][:, :(cur_beacon_indices == 2).sum()]
|
300 |
+
else:
|
301 |
+
value_states = self.v_proj(hidden_states)
|
302 |
+
|
303 |
+
else:
|
304 |
+
query_states = self.q_proj(hidden_states)
|
305 |
+
key_states = self.k_proj(hidden_states)
|
306 |
+
value_states = self.v_proj(hidden_states)
|
307 |
+
|
308 |
+
return query_states, key_states, value_states
|
309 |
+
|
310 |
+
def o_proj_with_beacon(self, attn_output, beacon_size, beacon_indices):
|
311 |
+
if beacon_size > 0:
|
312 |
+
# NOTE: when beacon_pos == "interleave", the beacon_indices points to all beacon tokens in the current window (cached activations + input_ids), so we shall slice out the part corresponding to the input_ids
|
313 |
+
cur_beacon_indices = beacon_indices[-attn_output.shape[1]:]
|
314 |
+
|
315 |
+
if "o" in self.config.beacon_param:
|
316 |
+
ordinal_attn_output = self.o_proj(attn_output)
|
317 |
+
beacon_attn_output = self.beacon_o_proj(attn_output)
|
318 |
+
attn_output = torch.where((cur_beacon_indices == 0)[:, None], ordinal_attn_output, beacon_attn_output)
|
319 |
+
else:
|
320 |
+
attn_output = self.o_proj(attn_output)
|
321 |
+
else:
|
322 |
+
attn_output = self.o_proj(attn_output)
|
323 |
+
return attn_output
|
324 |
+
|
325 |
+
def forward(
|
326 |
+
self,
|
327 |
+
hidden_states: torch.Tensor,
|
328 |
+
attention_mask: Optional[torch.Tensor] = None,
|
329 |
+
position_ids: Optional[torch.LongTensor] = None,
|
330 |
+
past_key_value: Optional[Cache] = None,
|
331 |
+
output_attentions: bool = False,
|
332 |
+
use_cache: bool = False,
|
333 |
+
**kwargs,
|
334 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
335 |
+
if "padding_mask" in kwargs:
|
336 |
+
warnings.warn(
|
337 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
338 |
+
)
|
339 |
+
|
340 |
+
bsz, q_len, _ = hidden_states.size()
|
341 |
+
kv_seq_len = hidden_states.shape[-2]
|
342 |
+
past_key, past_value, beacon_size, beacon_indices = past_key_value
|
343 |
+
|
344 |
+
if past_key is not None:
|
345 |
+
past_seq_len = past_key.shape[2]
|
346 |
+
kv_seq_len += past_seq_len
|
347 |
+
else:
|
348 |
+
past_seq_len = 0
|
349 |
+
|
350 |
+
query_states, key_states, value_states = self.qkv_proj_with_beacon(hidden_states, beacon_size, beacon_indices)
|
351 |
+
|
352 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
353 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
354 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
355 |
+
|
356 |
+
# return keys and values before rope
|
357 |
+
# NOTE: incrementally return keys and values for efficiency
|
358 |
+
past_key_value = (key_states, value_states, beacon_size, beacon_indices)
|
359 |
+
|
360 |
+
if past_key is not None:
|
361 |
+
# reuse k, v, self_attention
|
362 |
+
key_states = torch.cat([past_key, key_states], dim=2)
|
363 |
+
value_states = torch.cat([past_value, value_states], dim=2)
|
364 |
+
|
365 |
+
query_states, key_states = self.rotary_emb(query_states, key_states, position_ids)
|
366 |
+
|
367 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
368 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
369 |
+
|
370 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
371 |
+
|
372 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
373 |
+
raise ValueError(
|
374 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
375 |
+
f" {attn_weights.size()}"
|
376 |
+
)
|
377 |
+
|
378 |
+
if attention_mask is not None:
|
379 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
380 |
+
raise ValueError(
|
381 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
382 |
+
)
|
383 |
+
attn_weights = attn_weights + attention_mask
|
384 |
+
|
385 |
+
# upcast attention to fp32
|
386 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
387 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
388 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
389 |
+
|
390 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
391 |
+
raise ValueError(
|
392 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
393 |
+
f" {attn_output.size()}"
|
394 |
+
)
|
395 |
+
|
396 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
397 |
+
|
398 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
399 |
+
|
400 |
+
attn_output = self.o_proj_with_beacon(attn_output, beacon_size, beacon_indices)
|
401 |
+
|
402 |
+
if not output_attentions:
|
403 |
+
attn_weights = None
|
404 |
+
|
405 |
+
return attn_output, attn_weights, past_key_value
|
406 |
+
|
407 |
+
|
408 |
+
class Qwen2SdpaAttention(Qwen2Attention):
|
409 |
+
"""
|
410 |
+
Qwen2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
411 |
+
`Qwen2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
412 |
+
SDPA API.
|
413 |
+
"""
|
414 |
+
|
415 |
+
# Adapted from Qwen2Attention.forward
|
416 |
+
def forward(
|
417 |
+
self,
|
418 |
+
hidden_states: torch.Tensor,
|
419 |
+
attention_mask: Optional[torch.Tensor] = None,
|
420 |
+
position_ids: Optional[torch.LongTensor] = None,
|
421 |
+
past_key_value: Optional[Cache] = None,
|
422 |
+
output_attentions: bool = False,
|
423 |
+
use_cache: bool = False,
|
424 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
425 |
+
if output_attentions:
|
426 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
427 |
+
logger.warning_once(
|
428 |
+
"Qwen2Model is using Qwen2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
429 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
430 |
+
)
|
431 |
+
return super().forward(
|
432 |
+
hidden_states=hidden_states,
|
433 |
+
attention_mask=attention_mask,
|
434 |
+
position_ids=position_ids,
|
435 |
+
past_key_value=past_key_value,
|
436 |
+
output_attentions=output_attentions,
|
437 |
+
use_cache=use_cache,
|
438 |
+
)
|
439 |
+
bsz, q_len, _ = hidden_states.size()
|
440 |
+
kv_seq_len = hidden_states.shape[-2]
|
441 |
+
past_key, past_value, beacon_size, beacon_indices = past_key_value
|
442 |
+
if past_key is not None:
|
443 |
+
past_seq_len = past_key.shape[2]
|
444 |
+
kv_seq_len += past_seq_len
|
445 |
+
else:
|
446 |
+
past_seq_len = 0
|
447 |
+
|
448 |
+
query_states, key_states, value_states = self.qkv_proj_with_beacon(hidden_states, beacon_size, beacon_indices)
|
449 |
+
|
450 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
451 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
452 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
453 |
+
|
454 |
+
# return keys and values before rope
|
455 |
+
# NOTE: incrementally return keys and values for efficiency
|
456 |
+
past_key_value = (key_states, value_states, beacon_size, beacon_indices)
|
457 |
+
|
458 |
+
if past_key is not None:
|
459 |
+
# reuse k, v, self_attention
|
460 |
+
key_states = torch.cat([past_key, key_states], dim=2)
|
461 |
+
value_states = torch.cat([past_value, value_states], dim=2)
|
462 |
+
|
463 |
+
query_states, key_states = self.rotary_emb(query_states, key_states, position_ids)
|
464 |
+
|
465 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
466 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
467 |
+
|
468 |
+
if attention_mask is not None:
|
469 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
470 |
+
raise ValueError(
|
471 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
472 |
+
)
|
473 |
+
|
474 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
475 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
476 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
477 |
+
query_states = query_states.contiguous()
|
478 |
+
key_states = key_states.contiguous()
|
479 |
+
value_states = value_states.contiguous()
|
480 |
+
|
481 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
482 |
+
query_states,
|
483 |
+
key_states,
|
484 |
+
value_states,
|
485 |
+
attn_mask=attention_mask,
|
486 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
487 |
+
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
488 |
+
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
489 |
+
)
|
490 |
+
|
491 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
492 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
493 |
+
attn_output = self.o_proj_with_beacon(attn_output, beacon_size, beacon_indices)
|
494 |
+
|
495 |
+
return attn_output, None, past_key_value
|
496 |
+
|
497 |
+
|
498 |
+
class Qwen2FlashAttention2(Qwen2Attention):
|
499 |
+
"""
|
500 |
+
Qwen2 flash attention module. This module inherits from `Qwen2Attention` as the weights of the module stays
|
501 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
502 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
503 |
+
"""
|
504 |
+
|
505 |
+
def __init__(self, *args, **kwargs):
|
506 |
+
super().__init__(*args, **kwargs)
|
507 |
+
|
508 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
509 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
510 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
511 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
512 |
+
|
513 |
+
def forward(
|
514 |
+
self,
|
515 |
+
hidden_states: torch.Tensor,
|
516 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
517 |
+
position_ids: Optional[torch.LongTensor] = None,
|
518 |
+
past_key_value: Optional[Cache] = None,
|
519 |
+
output_attentions: bool = False,
|
520 |
+
use_cache: bool = False,
|
521 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
522 |
+
output_attentions = False
|
523 |
+
|
524 |
+
bsz, q_len, _ = hidden_states.size()
|
525 |
+
kv_seq_len = hidden_states.shape[-2]
|
526 |
+
|
527 |
+
past_key, past_value, beacon_size, beacon_indices = past_key_value
|
528 |
+
if past_key is not None:
|
529 |
+
past_seq_len = past_key.shape[2]
|
530 |
+
kv_seq_len += past_seq_len
|
531 |
+
else:
|
532 |
+
past_seq_len = 0
|
533 |
+
|
534 |
+
query_states, key_states, value_states = self.qkv_proj_with_beacon(hidden_states, beacon_size, beacon_indices)
|
535 |
+
|
536 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
537 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
538 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
539 |
+
|
540 |
+
# return keys and values before rope
|
541 |
+
# NOTE: incrementally return keys and values for efficiency
|
542 |
+
past_key_value = (key_states, value_states, beacon_size, beacon_indices)
|
543 |
+
|
544 |
+
if past_key is not None:
|
545 |
+
# reuse k, v, self_attention
|
546 |
+
key_states = torch.cat([past_key, key_states], dim=2)
|
547 |
+
value_states = torch.cat([past_value, value_states], dim=2)
|
548 |
+
|
549 |
+
query_states, key_states = self.rotary_emb(query_states, key_states, position_ids)
|
550 |
+
|
551 |
+
# FlashAttention will automatically handle grouped query attention
|
552 |
+
# key_states = repeat_kv(key_states, self.num_key_value_groups)
|
553 |
+
# value_states = repeat_kv(value_states, self.num_key_value_groups)
|
554 |
+
|
555 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
556 |
+
# to be able to avoid many of these transpose/reshape/view.
|
557 |
+
query_states = query_states.transpose(1, 2)
|
558 |
+
key_states = key_states.transpose(1, 2)
|
559 |
+
value_states = value_states.transpose(1, 2)
|
560 |
+
|
561 |
+
dropout_rate = self.attention_dropout if self.training else 0.0
|
562 |
+
|
563 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
564 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
565 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
566 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
567 |
+
# in fp32. (Qwen2RMSNorm handles it correctly)
|
568 |
+
|
569 |
+
input_dtype = query_states.dtype
|
570 |
+
if input_dtype == torch.float32:
|
571 |
+
if torch.is_autocast_enabled():
|
572 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
573 |
+
# Handle the case where the model is quantized
|
574 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
575 |
+
target_dtype = self.config._pre_quantization_dtype
|
576 |
+
else:
|
577 |
+
target_dtype = self.q_proj.weight.dtype
|
578 |
+
|
579 |
+
logger.warning_once(
|
580 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
581 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
582 |
+
f" {target_dtype}."
|
583 |
+
)
|
584 |
+
|
585 |
+
query_states = query_states.to(target_dtype)
|
586 |
+
key_states = key_states.to(target_dtype)
|
587 |
+
value_states = value_states.to(target_dtype)
|
588 |
+
|
589 |
+
attn_output = self._flash_attention_forward(
|
590 |
+
query_states,
|
591 |
+
key_states,
|
592 |
+
value_states,
|
593 |
+
attention_mask,
|
594 |
+
q_len,
|
595 |
+
dropout=dropout_rate
|
596 |
+
)
|
597 |
+
|
598 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
599 |
+
attn_output = self.o_proj_with_beacon(attn_output, beacon_size, beacon_indices)
|
600 |
+
|
601 |
+
if not output_attentions:
|
602 |
+
attn_weights = None
|
603 |
+
|
604 |
+
return attn_output, attn_weights, past_key_value
|
605 |
+
|
606 |
+
def _flash_attention_forward(
|
607 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
608 |
+
):
|
609 |
+
"""
|
610 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
611 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
612 |
+
|
613 |
+
Args:
|
614 |
+
query_states (`torch.Tensor`):
|
615 |
+
Input query states to be passed to Flash Attention API
|
616 |
+
key_states (`torch.Tensor`):
|
617 |
+
Input key states to be passed to Flash Attention API
|
618 |
+
value_states (`torch.Tensor`):
|
619 |
+
Input value states to be passed to Flash Attention API
|
620 |
+
attention_mask (`torch.Tensor`):
|
621 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
622 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
623 |
+
dropout (`float`):
|
624 |
+
Attention dropout
|
625 |
+
softmax_scale (`float`, *optional*):
|
626 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
627 |
+
"""
|
628 |
+
if not self._flash_attn_uses_top_left_mask:
|
629 |
+
causal = self.is_causal
|
630 |
+
else:
|
631 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in Qwen2FlashAttention2 __init__.
|
632 |
+
causal = self.is_causal and query_length != 1
|
633 |
+
|
634 |
+
# Contains at least one padding token in the sequence
|
635 |
+
if attention_mask is not None:
|
636 |
+
batch_size = query_states.shape[0]
|
637 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
638 |
+
query_states, key_states, value_states, attention_mask, query_length
|
639 |
+
)
|
640 |
+
|
641 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
642 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
643 |
+
|
644 |
+
attn_output_unpad = flash_attn_varlen_func(
|
645 |
+
query_states,
|
646 |
+
key_states,
|
647 |
+
value_states,
|
648 |
+
cu_seqlens_q=cu_seqlens_q,
|
649 |
+
cu_seqlens_k=cu_seqlens_k,
|
650 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
651 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
652 |
+
dropout_p=dropout,
|
653 |
+
softmax_scale=softmax_scale,
|
654 |
+
causal=causal,
|
655 |
+
)
|
656 |
+
|
657 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
658 |
+
else:
|
659 |
+
attn_output = flash_attn_func(
|
660 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
661 |
+
)
|
662 |
+
|
663 |
+
return attn_output
|
664 |
+
|
665 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
666 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
667 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
668 |
+
|
669 |
+
key_layer = index_first_axis(
|
670 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
671 |
+
)
|
672 |
+
value_layer = index_first_axis(
|
673 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
674 |
+
)
|
675 |
+
if query_length == kv_seq_len:
|
676 |
+
query_layer = index_first_axis(
|
677 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
678 |
+
)
|
679 |
+
cu_seqlens_q = cu_seqlens_k
|
680 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
681 |
+
indices_q = indices_k
|
682 |
+
elif query_length == 1:
|
683 |
+
max_seqlen_in_batch_q = 1
|
684 |
+
cu_seqlens_q = torch.arange(
|
685 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
686 |
+
) # There is a memcpy here, that is very bad.
|
687 |
+
indices_q = cu_seqlens_q[:-1]
|
688 |
+
query_layer = query_layer.squeeze(1)
|
689 |
+
else:
|
690 |
+
# The -q_len: slice assumes left padding.
|
691 |
+
attention_mask = attention_mask[:, -query_length:]
|
692 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
693 |
+
|
694 |
+
return (
|
695 |
+
query_layer,
|
696 |
+
key_layer,
|
697 |
+
value_layer,
|
698 |
+
indices_q,
|
699 |
+
(cu_seqlens_q, cu_seqlens_k),
|
700 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
701 |
+
)
|
702 |
+
|
703 |
+
|
704 |
+
QWEN2_ATTENTION_CLASSES = {
|
705 |
+
"eager": Qwen2Attention,
|
706 |
+
"sdpa": Qwen2SdpaAttention,
|
707 |
+
"flash_attention_2": Qwen2FlashAttention2,
|
708 |
+
}
|
709 |
+
|
710 |
+
|
711 |
+
class Qwen2DecoderLayer(nn.Module):
|
712 |
+
def __init__(self, config: Qwen2Config, layer_idx: int):
|
713 |
+
super().__init__()
|
714 |
+
self.hidden_size = config.hidden_size
|
715 |
+
|
716 |
+
if config.use_sliding_window and config._attn_implementation != "flash_attention_2":
|
717 |
+
logger.warning_once(
|
718 |
+
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
|
719 |
+
"unexpected results may be encountered."
|
720 |
+
)
|
721 |
+
self.self_attn = QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
722 |
+
|
723 |
+
self.mlp = Qwen2MLP(config)
|
724 |
+
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
725 |
+
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
726 |
+
|
727 |
+
def forward(
|
728 |
+
self,
|
729 |
+
hidden_states: torch.Tensor,
|
730 |
+
attention_mask: Optional[torch.Tensor] = None,
|
731 |
+
position_ids: Optional[torch.LongTensor] = None,
|
732 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
733 |
+
output_attentions: Optional[bool] = False,
|
734 |
+
use_cache: Optional[bool] = False,
|
735 |
+
**kwargs,
|
736 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
737 |
+
if "padding_mask" in kwargs:
|
738 |
+
warnings.warn(
|
739 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. "
|
740 |
+
"Please make sure use `attention_mask` instead.`"
|
741 |
+
)
|
742 |
+
"""
|
743 |
+
Args:
|
744 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
745 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
746 |
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
747 |
+
output_attentions (`bool`, *optional*):
|
748 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
749 |
+
returned tensors for more detail.
|
750 |
+
use_cache (`bool`, *optional*):
|
751 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
752 |
+
(see `past_key_values`).
|
753 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
754 |
+
"""
|
755 |
+
residual = hidden_states
|
756 |
+
|
757 |
+
hidden_states = self.input_layernorm(hidden_states)
|
758 |
+
|
759 |
+
# Self Attention
|
760 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
761 |
+
hidden_states=hidden_states,
|
762 |
+
attention_mask=attention_mask,
|
763 |
+
position_ids=position_ids,
|
764 |
+
past_key_value=past_key_value,
|
765 |
+
output_attentions=output_attentions,
|
766 |
+
use_cache=use_cache,
|
767 |
+
)
|
768 |
+
hidden_states = residual + hidden_states
|
769 |
+
|
770 |
+
# Fully Connected
|
771 |
+
residual = hidden_states
|
772 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
773 |
+
hidden_states = self.mlp(hidden_states)
|
774 |
+
hidden_states = residual + hidden_states
|
775 |
+
|
776 |
+
outputs = (hidden_states,)
|
777 |
+
|
778 |
+
if output_attentions:
|
779 |
+
outputs += (self_attn_weights,)
|
780 |
+
|
781 |
+
if use_cache:
|
782 |
+
outputs += (present_key_value,)
|
783 |
+
|
784 |
+
return outputs
|
785 |
+
|
786 |
+
|
787 |
+
QWEN2_START_DOCSTRING = r"""
|
788 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
789 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
790 |
+
etc.)
|
791 |
+
|
792 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
793 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
794 |
+
and behavior.
|
795 |
+
|
796 |
+
Parameters:
|
797 |
+
config ([`Qwen2Config`]):
|
798 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
799 |
+
load the weights associated with the model, only the configuration. Check out the
|
800 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
801 |
+
"""
|
802 |
+
|
803 |
+
|
804 |
+
@add_start_docstrings(
|
805 |
+
"The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
|
806 |
+
QWEN2_START_DOCSTRING,
|
807 |
+
)
|
808 |
+
class Qwen2PreTrainedModel(PreTrainedModel):
|
809 |
+
config_class = Qwen2Config
|
810 |
+
base_model_prefix = "model"
|
811 |
+
supports_gradient_checkpointing = True
|
812 |
+
_no_split_modules = ["Qwen2DecoderLayer"]
|
813 |
+
_skip_keys_device_placement = "past_key_values"
|
814 |
+
_supports_flash_attn_2 = True
|
815 |
+
_supports_sdpa = True
|
816 |
+
_supports_cache_class = True
|
817 |
+
|
818 |
+
def _init_weights(self, module):
|
819 |
+
std = self.config.initializer_range
|
820 |
+
if isinstance(module, nn.Linear):
|
821 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
822 |
+
if module.bias is not None:
|
823 |
+
module.bias.data.zero_()
|
824 |
+
elif isinstance(module, nn.Embedding):
|
825 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
826 |
+
if module.padding_idx is not None:
|
827 |
+
module.weight.data[module.padding_idx].zero_()
|
828 |
+
|
829 |
+
|
830 |
+
QWEN2_INPUTS_DOCSTRING = r"""
|
831 |
+
Args:
|
832 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
833 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
834 |
+
it.
|
835 |
+
|
836 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
837 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
838 |
+
|
839 |
+
[What are input IDs?](../glossary#input-ids)
|
840 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
841 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
842 |
+
|
843 |
+
- 1 for tokens that are **not masked**,
|
844 |
+
- 0 for tokens that are **masked**.
|
845 |
+
|
846 |
+
[What are attention masks?](../glossary#attention-mask)
|
847 |
+
|
848 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
849 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
850 |
+
|
851 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
852 |
+
`past_key_values`).
|
853 |
+
|
854 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
855 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
856 |
+
information on the default strategy.
|
857 |
+
|
858 |
+
- 1 indicates the head is **not masked**,
|
859 |
+
- 0 indicates the head is **masked**.
|
860 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
861 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
862 |
+
config.n_positions - 1]`.
|
863 |
+
|
864 |
+
[What are position IDs?](../glossary#position-ids)
|
865 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
866 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
867 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
868 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
869 |
+
|
870 |
+
Two formats are allowed:
|
871 |
+
- a [`~cache_utils.Cache`] instance;
|
872 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
873 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
874 |
+
cache format.
|
875 |
+
|
876 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
877 |
+
legacy cache format will be returned.
|
878 |
+
|
879 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
880 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
881 |
+
of shape `(batch_size, sequence_length)`.
|
882 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
883 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
884 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
885 |
+
model's internal embedding lookup matrix.
|
886 |
+
use_cache (`bool`, *optional*):
|
887 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
888 |
+
`past_key_values`).
|
889 |
+
output_attentions (`bool`, *optional*):
|
890 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
891 |
+
tensors for more detail.
|
892 |
+
output_hidden_states (`bool`, *optional*):
|
893 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
894 |
+
more detail.
|
895 |
+
return_dict (`bool`, *optional*):
|
896 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
897 |
+
"""
|
898 |
+
|
899 |
+
|
900 |
+
@add_start_docstrings(
|
901 |
+
"The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
|
902 |
+
QWEN2_START_DOCSTRING,
|
903 |
+
)
|
904 |
+
class Qwen2Model(Qwen2PreTrainedModel):
|
905 |
+
"""
|
906 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`]
|
907 |
+
|
908 |
+
Args:
|
909 |
+
config: Qwen2Config
|
910 |
+
"""
|
911 |
+
|
912 |
+
def __init__(self, config: Qwen2Config):
|
913 |
+
super().__init__(config)
|
914 |
+
self.padding_idx = config.pad_token_id
|
915 |
+
self.vocab_size = config.vocab_size
|
916 |
+
|
917 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
918 |
+
|
919 |
+
# BEACON: add beacon embedding
|
920 |
+
self.beacon_embed_tokens = nn.Embedding(1, config.hidden_size, self.padding_idx)
|
921 |
+
self.beacon_embed_tokens._is_hf_initialized = True
|
922 |
+
|
923 |
+
self.layers = nn.ModuleList(
|
924 |
+
[Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
925 |
+
)
|
926 |
+
self._attn_implementation = config._attn_implementation
|
927 |
+
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
928 |
+
|
929 |
+
self.gradient_checkpointing = False
|
930 |
+
# Initialize weights and apply final processing
|
931 |
+
self.post_init()
|
932 |
+
|
933 |
+
def _init_beacon_embed(self, missing_keys):
|
934 |
+
"""Initialize the beacon token embedding with that of the eos token."""
|
935 |
+
if is_deepspeed_zero3_enabled():
|
936 |
+
import deepspeed
|
937 |
+
params = [self.beacon_embed_tokens.weight, self.embed_tokens.weight]
|
938 |
+
with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
|
939 |
+
# deepspeed will initialize the parameters to zero
|
940 |
+
if (self.beacon_embed_tokens.weight == 0).all():
|
941 |
+
if self.config.beacon_embed_init == "bos":
|
942 |
+
self.beacon_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[self.config.bos_token_id]
|
943 |
+
elif self.config.beacon_embed_init == "eos":
|
944 |
+
if isinstance(self.config.eos_token_id, list):
|
945 |
+
eos_token_id = self.config.eos_token_id[0]
|
946 |
+
else:
|
947 |
+
eos_token_id = self.config.eos_token_id
|
948 |
+
self.beacon_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[eos_token_id]
|
949 |
+
else:
|
950 |
+
raise NotImplementedError(f"Make sure beacon_embed_init is either eos or bos, found {self.config.beacon_embed_init}")
|
951 |
+
else:
|
952 |
+
if any("beacon_embed_tokens" in missing_key for missing_key in missing_keys):
|
953 |
+
if self.config.beacon_embed_init == "bos":
|
954 |
+
self.beacon_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[self.config.bos_token_id]
|
955 |
+
elif self.config.beacon_embed_init == "eos":
|
956 |
+
if isinstance(self.config.eos_token_id, list):
|
957 |
+
eos_token_id = self.config.eos_token_id[0]
|
958 |
+
else:
|
959 |
+
eos_token_id = self.config.eos_token_id
|
960 |
+
self.beacon_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[eos_token_id]
|
961 |
+
else:
|
962 |
+
raise NotImplementedError(f"Make sure beacon_embed_init is either eos or bos, found {self.config.beacon_embed_init}")
|
963 |
+
|
964 |
+
def get_input_embeddings(self):
|
965 |
+
return self.embed_tokens
|
966 |
+
|
967 |
+
def set_input_embeddings(self, value):
|
968 |
+
self.embed_tokens = value
|
969 |
+
|
970 |
+
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
|
971 |
+
def forward(
|
972 |
+
self,
|
973 |
+
input_ids: torch.LongTensor = None,
|
974 |
+
attention_mask: Optional[torch.Tensor] = None,
|
975 |
+
position_ids: Optional[torch.LongTensor] = None,
|
976 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
977 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
978 |
+
use_cache: Optional[bool] = None,
|
979 |
+
output_attentions: Optional[bool] = None,
|
980 |
+
output_hidden_states: Optional[bool] = None,
|
981 |
+
return_dict: Optional[bool] = None,
|
982 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
983 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
984 |
+
output_hidden_states = (
|
985 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
986 |
+
)
|
987 |
+
# BEACON: always use cache
|
988 |
+
use_cache = True
|
989 |
+
|
990 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
991 |
+
|
992 |
+
# retrieve input_ids and inputs_embeds
|
993 |
+
if input_ids is not None and inputs_embeds is not None:
|
994 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
995 |
+
elif input_ids is not None:
|
996 |
+
batch_size, seq_length = input_ids.shape[:2]
|
997 |
+
elif inputs_embeds is not None:
|
998 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
999 |
+
else:
|
1000 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
1001 |
+
|
1002 |
+
past_key, past_value, beacon_size, beacon_indices = past_key_values[0]
|
1003 |
+
|
1004 |
+
# BEACON: separately embed ordinal tokens and beacon tokens because ordinal tokens do not receive gradients
|
1005 |
+
if beacon_size > 0:
|
1006 |
+
# NOTE: when beacon_pos == "interleave", the beacon_indices points to all beacon tokens in the current window (cached activations + input_ids), so we shall slice out the part corresponding to the input_ids
|
1007 |
+
cur_beacon_indices = beacon_indices[-input_ids.shape[1]:]
|
1008 |
+
|
1009 |
+
ordinal_input_ids = input_ids[:, cur_beacon_indices == 0]
|
1010 |
+
beacon_input_ids = input_ids[:, cur_beacon_indices > 0]
|
1011 |
+
ordinal_inputs_embeds = self.embed_tokens(ordinal_input_ids)
|
1012 |
+
beacon_input_embeds = self.beacon_embed_tokens(beacon_input_ids - self.config.vocab_size)
|
1013 |
+
# create a new embedding tensor
|
1014 |
+
inputs_embeds = beacon_input_embeds.new_zeros(*input_ids.shape, beacon_input_embeds.shape[-1])
|
1015 |
+
inputs_embeds[:, cur_beacon_indices == 0] = ordinal_inputs_embeds
|
1016 |
+
inputs_embeds[:, cur_beacon_indices > 0] = beacon_input_embeds
|
1017 |
+
|
1018 |
+
else:
|
1019 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
1020 |
+
|
1021 |
+
# embed positions
|
1022 |
+
hidden_states = inputs_embeds
|
1023 |
+
|
1024 |
+
# print(f"input_ids: {input_ids}")
|
1025 |
+
# print(f"beacon_indices: {beacon_indices}")
|
1026 |
+
# print(f"position_ids: {position_ids}")
|
1027 |
+
# print(f"attention_mask:\n{attention_mask == 0}")
|
1028 |
+
# x = input()
|
1029 |
+
# if x == "s":
|
1030 |
+
# return
|
1031 |
+
|
1032 |
+
# decoder layers
|
1033 |
+
all_hidden_states = () if output_hidden_states else None
|
1034 |
+
all_self_attns = () if output_attentions else None
|
1035 |
+
# BEACON: still use tuple to organize cache
|
1036 |
+
next_decoder_cache = () if use_cache else None
|
1037 |
+
|
1038 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1039 |
+
if output_hidden_states:
|
1040 |
+
all_hidden_states += (hidden_states,)
|
1041 |
+
|
1042 |
+
# BEACON: slice out the past_key_value of the corresponding layer
|
1043 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
1044 |
+
|
1045 |
+
if self.gradient_checkpointing and self.training:
|
1046 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1047 |
+
decoder_layer.__call__,
|
1048 |
+
hidden_states,
|
1049 |
+
attention_mask,
|
1050 |
+
position_ids,
|
1051 |
+
past_key_value,
|
1052 |
+
output_attentions,
|
1053 |
+
use_cache,
|
1054 |
+
)
|
1055 |
+
else:
|
1056 |
+
layer_outputs = decoder_layer(
|
1057 |
+
hidden_states,
|
1058 |
+
attention_mask=attention_mask,
|
1059 |
+
position_ids=position_ids,
|
1060 |
+
past_key_value=past_key_value,
|
1061 |
+
output_attentions=output_attentions,
|
1062 |
+
use_cache=use_cache,
|
1063 |
+
)
|
1064 |
+
|
1065 |
+
hidden_states = layer_outputs[0]
|
1066 |
+
|
1067 |
+
if use_cache:
|
1068 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
1069 |
+
|
1070 |
+
if output_attentions:
|
1071 |
+
all_self_attns += (layer_outputs[1],)
|
1072 |
+
|
1073 |
+
hidden_states = self.norm(hidden_states)
|
1074 |
+
|
1075 |
+
# add hidden states from the last decoder layer
|
1076 |
+
if output_hidden_states:
|
1077 |
+
all_hidden_states += (hidden_states,)
|
1078 |
+
|
1079 |
+
next_cache = next_decoder_cache if use_cache else None
|
1080 |
+
|
1081 |
+
if not return_dict:
|
1082 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1083 |
+
return BaseModelOutputWithPast(
|
1084 |
+
last_hidden_state=hidden_states,
|
1085 |
+
past_key_values=next_cache,
|
1086 |
+
hidden_states=all_hidden_states,
|
1087 |
+
attentions=all_self_attns,
|
1088 |
+
)
|
1089 |
+
|
1090 |
+
|
1091 |
+
class Qwen2ForCausalLM(Qwen2PreTrainedModel):
|
1092 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1093 |
+
|
1094 |
+
def __init__(self, config):
|
1095 |
+
super().__init__(config)
|
1096 |
+
self.model = Qwen2Model(config)
|
1097 |
+
self.vocab_size = config.vocab_size
|
1098 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1099 |
+
# Initialize weights and apply final processing
|
1100 |
+
self.post_init()
|
1101 |
+
|
1102 |
+
def get_input_embeddings(self):
|
1103 |
+
return self.model.embed_tokens
|
1104 |
+
|
1105 |
+
def set_input_embeddings(self, value):
|
1106 |
+
self.model.embed_tokens = value
|
1107 |
+
|
1108 |
+
def get_output_embeddings(self):
|
1109 |
+
return self.lm_head
|
1110 |
+
|
1111 |
+
def set_output_embeddings(self, new_embeddings):
|
1112 |
+
self.lm_head = new_embeddings
|
1113 |
+
|
1114 |
+
def set_decoder(self, decoder):
|
1115 |
+
self.model = decoder
|
1116 |
+
|
1117 |
+
def get_decoder(self):
|
1118 |
+
return self.model
|
1119 |
+
|
1120 |
+
@classmethod
|
1121 |
+
def from_pretrained(cls, *args, **kwargs):
|
1122 |
+
"""Override the default from_pretrained to extend vocab size according to beacon_size."""
|
1123 |
+
kwargs.update(output_loading_info=True)
|
1124 |
+
model, loading_info = super().from_pretrained(*args, **kwargs)
|
1125 |
+
|
1126 |
+
# NOTE: set memory after from_pretrained because there may be another transformer model inside the Memory object, which may cause weird erros during loading
|
1127 |
+
config = model.config
|
1128 |
+
model.memory = Memory(
|
1129 |
+
model_config=config,
|
1130 |
+
k_seq_dim=2,
|
1131 |
+
v_seq_dim=2,
|
1132 |
+
)
|
1133 |
+
|
1134 |
+
missing_keys = loading_info["missing_keys"]
|
1135 |
+
# NOTE: the beacon parameters may or may not be loaded from the checkpoint
|
1136 |
+
# if it is loaded from the checkpoint, we should not re-initilize it
|
1137 |
+
model.model._init_beacon_embed(missing_keys)
|
1138 |
+
# initialize weights of possible q,k,v,o,mlp
|
1139 |
+
for layer in model.model.layers:
|
1140 |
+
layer.self_attn._init_beacon_proj(missing_keys)
|
1141 |
+
|
1142 |
+
return model
|
1143 |
+
|
1144 |
+
def _native_forward(
|
1145 |
+
self,
|
1146 |
+
input_ids: torch.LongTensor = None,
|
1147 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1148 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1149 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1150 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1151 |
+
labels: Optional[torch.LongTensor] = None,
|
1152 |
+
use_cache: Optional[bool] = None,
|
1153 |
+
output_attentions: Optional[bool] = None,
|
1154 |
+
output_hidden_states: Optional[bool] = None,
|
1155 |
+
return_dict: Optional[bool] = None,
|
1156 |
+
) -> Union[Tuple, ModelOutput]:
|
1157 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1158 |
+
output_hidden_states = (
|
1159 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1160 |
+
)
|
1161 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1162 |
+
|
1163 |
+
# when we directly call _native_forward, the past_key_values would be None
|
1164 |
+
if past_key_values is None:
|
1165 |
+
# NOTE: set beacon size to 0 to avoid using any beacon parameters, see Qwen2Attention.forward
|
1166 |
+
past_key_values = [(None, None, 0, None) for _ in range(self.config.num_hidden_layers)]
|
1167 |
+
|
1168 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1169 |
+
outputs = self.model(
|
1170 |
+
input_ids=input_ids,
|
1171 |
+
attention_mask=attention_mask,
|
1172 |
+
position_ids=position_ids,
|
1173 |
+
past_key_values=past_key_values,
|
1174 |
+
inputs_embeds=inputs_embeds,
|
1175 |
+
use_cache=use_cache,
|
1176 |
+
output_attentions=output_attentions,
|
1177 |
+
output_hidden_states=output_hidden_states,
|
1178 |
+
return_dict=return_dict,
|
1179 |
+
)
|
1180 |
+
|
1181 |
+
hidden_states = outputs[0]
|
1182 |
+
logits = self.lm_head(hidden_states)
|
1183 |
+
logits = logits.float()
|
1184 |
+
|
1185 |
+
loss = None
|
1186 |
+
batch_loss = None
|
1187 |
+
token_loss = None
|
1188 |
+
|
1189 |
+
if labels is not None:
|
1190 |
+
loss, batch_loss, token_loss = compute_loss(logits, labels, shift=False)
|
1191 |
+
|
1192 |
+
if not return_dict:
|
1193 |
+
output = (logits,) + outputs[1:]
|
1194 |
+
return (loss,) + output if loss is not None else output
|
1195 |
+
|
1196 |
+
return ModelOutput(
|
1197 |
+
loss=loss,
|
1198 |
+
batch_loss=batch_loss,
|
1199 |
+
token_loss=token_loss,
|
1200 |
+
logits=logits,
|
1201 |
+
past_key_values=outputs.past_key_values,
|
1202 |
+
hidden_states=outputs.hidden_states,
|
1203 |
+
attentions=outputs.attentions,
|
1204 |
+
)
|
1205 |
+
|
1206 |
+
def _beacon_forward(self,
|
1207 |
+
input_ids: torch.LongTensor = None,
|
1208 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1209 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1210 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1211 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1212 |
+
labels: Optional[torch.LongTensor] = None,
|
1213 |
+
use_cache: Optional[bool] = None,
|
1214 |
+
output_attentions: Optional[bool] = None,
|
1215 |
+
output_hidden_states: Optional[bool] = None,
|
1216 |
+
return_dict: Optional[bool] = None,
|
1217 |
+
beacon_skip_first: Optional[int] = None,
|
1218 |
+
beacon_skip_last: Optional[int] = None,
|
1219 |
+
):
|
1220 |
+
# t1 = time.time()
|
1221 |
+
|
1222 |
+
# initialize cache
|
1223 |
+
self.memory.prepare(
|
1224 |
+
input_ids=input_ids,
|
1225 |
+
attention_mask=attention_mask,
|
1226 |
+
labels=labels,
|
1227 |
+
skip_first=beacon_skip_first,
|
1228 |
+
skip_last=beacon_skip_last,
|
1229 |
+
)
|
1230 |
+
|
1231 |
+
# t2 = time.time()
|
1232 |
+
|
1233 |
+
while not self.memory.finish:
|
1234 |
+
|
1235 |
+
# t3 = time.time()
|
1236 |
+
|
1237 |
+
input_ids, attention_mask, position_ids, past_key_values, labels = self.memory.step()
|
1238 |
+
|
1239 |
+
# t4 = time.time()
|
1240 |
+
|
1241 |
+
outputs = self._native_forward(
|
1242 |
+
input_ids=input_ids,
|
1243 |
+
attention_mask=attention_mask,
|
1244 |
+
position_ids=position_ids,
|
1245 |
+
past_key_values=past_key_values,
|
1246 |
+
inputs_embeds=inputs_embeds,
|
1247 |
+
use_cache=use_cache,
|
1248 |
+
output_attentions=output_attentions,
|
1249 |
+
output_hidden_states=output_hidden_states,
|
1250 |
+
return_dict=return_dict,
|
1251 |
+
labels=labels,
|
1252 |
+
)
|
1253 |
+
|
1254 |
+
# t5 = time.time()
|
1255 |
+
|
1256 |
+
# update past_key_values
|
1257 |
+
self.memory.update_memory(outputs.past_key_values)
|
1258 |
+
|
1259 |
+
# t6 = time.time()
|
1260 |
+
|
1261 |
+
if labels is not None:
|
1262 |
+
# update loss
|
1263 |
+
self.memory.update_loss(outputs.batch_loss, (labels != -100).sum(-1))
|
1264 |
+
|
1265 |
+
# t7 = time.time()
|
1266 |
+
|
1267 |
+
# print(f"step time: {t4-t3}, forward time: {t5-t4}, update time: {t6-t5}, loss time: {t7-t6}")
|
1268 |
+
# input()
|
1269 |
+
|
1270 |
+
# t8 = time.time()
|
1271 |
+
|
1272 |
+
# output loss, past_key_values, and perplexity
|
1273 |
+
outputs = self.memory.output(outputs)
|
1274 |
+
|
1275 |
+
# t9 = time.time()
|
1276 |
+
|
1277 |
+
# print(f"output time: {t9-t8}")
|
1278 |
+
# input()
|
1279 |
+
|
1280 |
+
return outputs
|
1281 |
+
|
1282 |
+
def forward(self, **kwargs):
|
1283 |
+
"""Forward computation over a batch of sequences.
|
1284 |
+
"""
|
1285 |
+
# only allow gradient when training
|
1286 |
+
with optional_grad_ctx(with_grad=self.training):
|
1287 |
+
# we can disable beacon to use the original mistral
|
1288 |
+
if hasattr(self, "_enable_beacon") and self._enable_beacon == False:
|
1289 |
+
return self._native_forward(**kwargs)
|
1290 |
+
else:
|
1291 |
+
return self._beacon_forward(**kwargs)
|
1292 |
+
|
1293 |
+
def prepare_inputs_for_generation(
|
1294 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, beacon_skip_first=None, beacon_skip_last=None, **kwargs
|
1295 |
+
):
|
1296 |
+
if past_key_values:
|
1297 |
+
input_ids = input_ids[:, -1:]
|
1298 |
+
|
1299 |
+
model_inputs = {"input_ids": input_ids, "beacon_skip_first": beacon_skip_first, "beacon_skip_last": beacon_skip_last}
|
1300 |
+
return model_inputs
|
1301 |
+
|
1302 |
+
@staticmethod
|
1303 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1304 |
+
reordered_past = ()
|
1305 |
+
for layer_past in past_key_values:
|
1306 |
+
reordered_past += (
|
1307 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1308 |
+
)
|
1309 |
+
return reordered_past
|
modeling_utils.py
ADDED
@@ -0,0 +1,711 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from tqdm import tqdm
|
4 |
+
from dataclasses import dataclass
|
5 |
+
from contextlib import nullcontext
|
6 |
+
from typing import Mapping, Optional, Tuple
|
7 |
+
from accelerate import Accelerator
|
8 |
+
from collections import defaultdict
|
9 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast
|
10 |
+
|
11 |
+
|
12 |
+
def optional_grad_ctx(with_grad=False):
|
13 |
+
if with_grad:
|
14 |
+
return nullcontext()
|
15 |
+
else:
|
16 |
+
return torch.no_grad()
|
17 |
+
|
18 |
+
def move_to_device(data, device):
|
19 |
+
"""
|
20 |
+
Prepares one `data` before feeding it to the model, be it a tensor or a nested list/dictionary of tensors.
|
21 |
+
"""
|
22 |
+
if isinstance(data, Mapping):
|
23 |
+
return type(data)({k: move_to_device(v, device) for k, v in data.items()})
|
24 |
+
elif isinstance(data, (tuple, list)):
|
25 |
+
return type(data)(move_to_device(v, device) for v in data)
|
26 |
+
elif isinstance(data, torch.Tensor):
|
27 |
+
kwargs = {"device": device}
|
28 |
+
return data.to(**kwargs)
|
29 |
+
else:
|
30 |
+
return data
|
31 |
+
|
32 |
+
def get_shifted_labels(input_ids):
|
33 |
+
if isinstance(input_ids, torch.Tensor):
|
34 |
+
labels = input_ids.clone()
|
35 |
+
labels = torch.cat([labels[:, 1:], labels.new_zeros((input_ids.shape[0], 1)) - 100], dim=-1)
|
36 |
+
elif isinstance(input_ids, list) and isinstance(input_ids[0], int):
|
37 |
+
labels = input_ids.copy()
|
38 |
+
labels = labels[1:] + [-100]
|
39 |
+
elif isinstance(input_ids, list) and isinstance(input_ids[0], list):
|
40 |
+
labels = input_ids.copy()
|
41 |
+
for i, label in enumerate(labels):
|
42 |
+
labels[i] = labels[i][1:] + [-100]
|
43 |
+
else:
|
44 |
+
raise NotImplementedError
|
45 |
+
return labels
|
46 |
+
|
47 |
+
def compute_loss(logits, labels, shift=False):
|
48 |
+
"""
|
49 |
+
Returns:
|
50 |
+
token_loss: batch_size, seq_length
|
51 |
+
"""
|
52 |
+
if shift:
|
53 |
+
labels = get_shifted_labels(labels)
|
54 |
+
|
55 |
+
labels = labels.to(logits.device)
|
56 |
+
batch_size = logits.shape[0]
|
57 |
+
|
58 |
+
# NOTE: the loss on -100 labels is 0 by default
|
59 |
+
token_loss = torch.nn.functional.cross_entropy(
|
60 |
+
logits.flatten(0, 1),
|
61 |
+
labels.reshape(-1),
|
62 |
+
reduction="none"
|
63 |
+
).reshape(batch_size, -1) # batch_size, seq_len
|
64 |
+
|
65 |
+
# print(token_loss)
|
66 |
+
|
67 |
+
valid_token_num = (labels != -100).sum(-1) # batch_size
|
68 |
+
all_valid_token_num = valid_token_num.sum()
|
69 |
+
|
70 |
+
if all_valid_token_num > 0:
|
71 |
+
loss = token_loss.sum() / valid_token_num.sum()
|
72 |
+
else:
|
73 |
+
loss = token_loss.sum()
|
74 |
+
|
75 |
+
batch_loss = token_loss.sum(-1) / valid_token_num
|
76 |
+
# prevent nan
|
77 |
+
if (valid_token_num == 0).any():
|
78 |
+
batch_loss = batch_loss.masked_fill(valid_token_num == 0, 0.)
|
79 |
+
|
80 |
+
return loss, batch_loss, token_loss
|
81 |
+
|
82 |
+
|
83 |
+
@torch.no_grad()
|
84 |
+
def evaluate_perplexity(model, dataloader, accelerator:Optional[Accelerator]=None):
|
85 |
+
if accelerator is not None and type(dataloader) == torch.utils.data.DataLoader:
|
86 |
+
# if the dataloader has been prepared, we shall not prepare it twice, especially in case of deepspeed
|
87 |
+
dataloader = accelerator.prepare(dataloader)
|
88 |
+
|
89 |
+
# if accelerator.process_index == 0:
|
90 |
+
# for name, x in model.named_parameters():
|
91 |
+
# print(f"{name: ^80} {x.dtype}")
|
92 |
+
|
93 |
+
all_loss = defaultdict(list)
|
94 |
+
for i, x in enumerate(tqdm(dataloader, desc="Computing Perplexity")):
|
95 |
+
# NOTE: important to reset memory for every batch
|
96 |
+
if hasattr(model, "memory"):
|
97 |
+
model.memory.reset()
|
98 |
+
|
99 |
+
# the seq id
|
100 |
+
index = x.pop("index")
|
101 |
+
# length is used to group training data, no use here
|
102 |
+
length = x.pop("length", None)
|
103 |
+
|
104 |
+
output = model(**x)
|
105 |
+
|
106 |
+
valid_token_num = (x["labels"] != -100).sum(-1)
|
107 |
+
|
108 |
+
# NOTE: we need the loss for each element in the batch for accurate computation, because the number of valid tokens may differ among elements
|
109 |
+
if hasattr(output, "batch_loss"):
|
110 |
+
# output from our model has batch_loss by default
|
111 |
+
batch_loss = output.batch_loss
|
112 |
+
else:
|
113 |
+
# output from other models does not
|
114 |
+
loss, batch_loss, token_loss = compute_loss(output.logits, x["labels"], shift=True)
|
115 |
+
|
116 |
+
index = index.tolist()
|
117 |
+
batch_loss = batch_loss.tolist()
|
118 |
+
valid_token_num = valid_token_num.tolist()
|
119 |
+
|
120 |
+
if accelerator is not None and accelerator.num_processes > 1:
|
121 |
+
# num_device * batch_size
|
122 |
+
index = accelerator.gather_for_metrics(index)
|
123 |
+
batch_loss = accelerator.gather_for_metrics(batch_loss)
|
124 |
+
valid_token_num = accelerator.gather_for_metrics(valid_token_num)
|
125 |
+
|
126 |
+
for _id, _loss, _num in zip(index, batch_loss, valid_token_num):
|
127 |
+
# loss times num is the total loss of all valid tokens
|
128 |
+
all_loss[_id].append((_loss * _num, _num))
|
129 |
+
|
130 |
+
all_loss = dict(all_loss)
|
131 |
+
for _id, loss_and_num in all_loss.items():
|
132 |
+
# sum up the loss for all valid tokens in the entire sequence, and divide the number of valid tokens
|
133 |
+
all_loss[_id] = sum([x[0] for x in loss_and_num]) / sum(x[1] for x in loss_and_num)
|
134 |
+
|
135 |
+
# average across then take exp
|
136 |
+
perplexity = math.exp(sum(all_loss.values()) / len(all_loss))
|
137 |
+
return perplexity
|
138 |
+
|
139 |
+
|
140 |
+
@torch.no_grad()
|
141 |
+
def evaluate_generation(model, dataloader, accelerator:Optional[Accelerator]=None, tokenizer=None, return_new_tokens_only=True, **generation_config):
|
142 |
+
if accelerator is not None and type(dataloader) == torch.utils.data.DataLoader:
|
143 |
+
# if the dataloader has been prepared, we shall not prepare it twice, especially in case of deepspeed
|
144 |
+
dataloader = accelerator.prepare(dataloader)
|
145 |
+
|
146 |
+
all_indices = []
|
147 |
+
all_outputs = []
|
148 |
+
|
149 |
+
index = 0
|
150 |
+
|
151 |
+
for i, x in enumerate(tqdm(dataloader, desc="Computing Generation")):
|
152 |
+
# if i > 3:
|
153 |
+
# break
|
154 |
+
|
155 |
+
# NOTE: important to reset memory for every batch
|
156 |
+
if hasattr(model, "memory"):
|
157 |
+
model.memory.reset()
|
158 |
+
|
159 |
+
# length is used to group training data, no use here
|
160 |
+
length = x.pop("length", None)
|
161 |
+
|
162 |
+
# if indices are None, we use batch size
|
163 |
+
indices = x.pop("index", None)
|
164 |
+
if indices is None:
|
165 |
+
indices = list(range(index, index + x['input_ids'].shape[0]))
|
166 |
+
index += x['input_ids'].shape[0]
|
167 |
+
else:
|
168 |
+
indices = indices.tolist()
|
169 |
+
|
170 |
+
outputs = model.generate(**x, **generation_config)
|
171 |
+
if return_new_tokens_only:
|
172 |
+
start_idx = x["input_ids"].shape[1]
|
173 |
+
outputs = outputs[:, start_idx:]
|
174 |
+
|
175 |
+
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
176 |
+
|
177 |
+
if accelerator is not None and accelerator.num_processes > 1:
|
178 |
+
outputs = accelerator.gather_for_metrics(outputs)
|
179 |
+
indices = accelerator.gather_for_metrics(indices)
|
180 |
+
|
181 |
+
outputs = outputs
|
182 |
+
indices = indices
|
183 |
+
all_indices.extend(indices)
|
184 |
+
all_outputs.extend(outputs)
|
185 |
+
|
186 |
+
return all_indices, all_outputs
|
187 |
+
|
188 |
+
|
189 |
+
@torch.no_grad()
|
190 |
+
def evaluate_nll(model, dataloader, accelerator:Optional[Accelerator]=None):
|
191 |
+
if accelerator is not None and type(dataloader) == torch.utils.data.DataLoader:
|
192 |
+
# if the dataloader has been prepared, we shall not prepare it twice, especially in case of deepspeed
|
193 |
+
dataloader = accelerator.prepare(dataloader)
|
194 |
+
|
195 |
+
# if accelerator.process_index == 0:
|
196 |
+
# for name, x in model.named_parameters():
|
197 |
+
# print(f"{name: ^80} {x.dtype}")
|
198 |
+
|
199 |
+
all_loss = defaultdict(list)
|
200 |
+
for i, x in enumerate(tqdm(dataloader, desc="Computing Perplexity")):
|
201 |
+
# NOTE: important to reset memory for every batch
|
202 |
+
if hasattr(model, "memory"):
|
203 |
+
model.memory.reset()
|
204 |
+
|
205 |
+
# the seq id
|
206 |
+
index = x.pop("index")
|
207 |
+
# length is used to group training data, no use here
|
208 |
+
length = x.pop("length", None)
|
209 |
+
|
210 |
+
output = model(**x)
|
211 |
+
|
212 |
+
valid_token_num = (x["labels"] != -100).sum()
|
213 |
+
|
214 |
+
# NOTE: we need the loss for each element in the batch for accurate computation, because the number of valid tokens may differ among elements
|
215 |
+
if hasattr(output, "batch_loss"):
|
216 |
+
# output from our model has batch_loss by default
|
217 |
+
batch_loss = output.batch_loss
|
218 |
+
else:
|
219 |
+
# output from other models does not
|
220 |
+
loss, batch_loss, token_loss = compute_loss(output.logits, x["labels"], shift=True)
|
221 |
+
|
222 |
+
if accelerator is not None and accelerator.num_processes > 1:
|
223 |
+
# num_device * batch_size
|
224 |
+
index = accelerator.gather_for_metrics(index)
|
225 |
+
batch_loss = accelerator.gather_for_metrics(batch_loss)
|
226 |
+
valid_token_num = accelerator.gather_for_metrics(valid_token_num)
|
227 |
+
|
228 |
+
for _id, _loss in zip(index.tolist(), batch_loss.tolist()):
|
229 |
+
# loss times num is the total loss of all valid tokens
|
230 |
+
all_loss[_id].append(_loss)
|
231 |
+
|
232 |
+
return all_loss
|
233 |
+
|
234 |
+
|
235 |
+
@dataclass
|
236 |
+
class ModelOutput(BaseModelOutputWithPast):
|
237 |
+
loss: Optional[torch.FloatTensor] = None
|
238 |
+
batch_loss: Optional[torch.FloatTensor] = None
|
239 |
+
token_loss: Optional[torch.FloatTensor] = None
|
240 |
+
logits: torch.FloatTensor = None
|
241 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
242 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
243 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
244 |
+
|
245 |
+
|
246 |
+
|
247 |
+
########## Various RoPE Scaling Methods Below (wrap the encoding process within the module for convenience) ##########
|
248 |
+
|
249 |
+
def get_rope(head_dim, base, max_position_embeddings, rope_scaling=None):
|
250 |
+
"""
|
251 |
+
Get rope module. {native, linear scaling, dynamic ntk scaling, yarn scaling, llama3 scaling}
|
252 |
+
"""
|
253 |
+
if rope_scaling is None:
|
254 |
+
rope = RotaryEmbedding(
|
255 |
+
dim=head_dim,
|
256 |
+
base=base,
|
257 |
+
max_position_embeddings=max_position_embeddings,
|
258 |
+
)
|
259 |
+
else:
|
260 |
+
scaling_type = rope_scaling["type"]
|
261 |
+
scaling_factor = rope_scaling["factor"]
|
262 |
+
if scaling_type == "linear":
|
263 |
+
rope = LinearScalingRotaryEmbedding(
|
264 |
+
dim=head_dim,
|
265 |
+
base=base,
|
266 |
+
max_position_embeddings=max_position_embeddings,
|
267 |
+
scaling_factor=scaling_factor,
|
268 |
+
)
|
269 |
+
elif scaling_type == "dynamic":
|
270 |
+
rope = DynamicNTKScalingRotaryEmbedding(
|
271 |
+
dim=head_dim,
|
272 |
+
base=base,
|
273 |
+
max_position_embeddings=max_position_embeddings,
|
274 |
+
scaling_factor=scaling_factor,
|
275 |
+
)
|
276 |
+
elif scaling_type == "yarn":
|
277 |
+
rope = YarnRotaryEmbedding(
|
278 |
+
dim=head_dim,
|
279 |
+
base=base,
|
280 |
+
max_position_embeddings=max_position_embeddings,
|
281 |
+
scaling_factor=scaling_factor,
|
282 |
+
)
|
283 |
+
elif scaling_type == "yarn-t":
|
284 |
+
rope = YarnDynamicTemperatureRotaryEmbedding(
|
285 |
+
dim=head_dim,
|
286 |
+
base=base,
|
287 |
+
max_position_embeddings=max_position_embeddings,
|
288 |
+
scaling_factor=scaling_factor,
|
289 |
+
)
|
290 |
+
elif scaling_type == "yarn-t-logn":
|
291 |
+
rope = YarnDynamicTemperatureLogNRotaryEmbedding(
|
292 |
+
dim=head_dim,
|
293 |
+
base=base,
|
294 |
+
max_position_embeddings=max_position_embeddings,
|
295 |
+
scaling_factor=scaling_factor,
|
296 |
+
)
|
297 |
+
elif scaling_type == "llama3":
|
298 |
+
rope = Llama3RotaryEmbedding(
|
299 |
+
dim=head_dim,
|
300 |
+
base=base,
|
301 |
+
max_position_embeddings=max_position_embeddings,
|
302 |
+
scaling_factor=scaling_factor,
|
303 |
+
original_max_position_embeddings=rope_scaling.get("original_max_position_embeddings", 8192),
|
304 |
+
low_freq_factor=rope_scaling.get("low_freq_factor", 1),
|
305 |
+
high_freq_factor=rope_scaling.get("high_freq_factor", 4),
|
306 |
+
)
|
307 |
+
else:
|
308 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
309 |
+
|
310 |
+
return rope
|
311 |
+
|
312 |
+
|
313 |
+
def rotate_half(x):
|
314 |
+
"""Rotates half the hidden dims of the input."""
|
315 |
+
x1 = x[..., : x.shape[-1] // 2]
|
316 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
317 |
+
return torch.cat((-x2, x1), dim=-1)
|
318 |
+
|
319 |
+
|
320 |
+
class RotaryEmbedding(torch.nn.Module):
|
321 |
+
def __init__(self, dim, max_position_embeddings=32768, base=10000, device=None):
|
322 |
+
super().__init__()
|
323 |
+
|
324 |
+
self.dim = dim
|
325 |
+
self.max_position_embeddings = max_position_embeddings
|
326 |
+
self.base = base
|
327 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.float32).to(device) / self.dim))
|
328 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
329 |
+
|
330 |
+
# Build here to make `torch.jit.trace` work.
|
331 |
+
self._set_cos_sin_cache(
|
332 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
333 |
+
)
|
334 |
+
|
335 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
336 |
+
self.max_seq_len_cached = seq_len
|
337 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
|
338 |
+
freqs = torch.outer(t, self.inv_freq)
|
339 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
340 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
341 |
+
self.register_buffer("cos_cached", emb.cos(), persistent=False)
|
342 |
+
self.register_buffer("sin_cached", emb.sin(), persistent=False)
|
343 |
+
|
344 |
+
def forward(self, q, k, position_ids):
|
345 |
+
seq_len = max(position_ids.max().item() + 1, k.shape[2])
|
346 |
+
|
347 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
348 |
+
if seq_len > self.max_seq_len_cached:
|
349 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=k.device, dtype=k.dtype)
|
350 |
+
|
351 |
+
# batch_size, 1, key_len, head_dim
|
352 |
+
k_cos = self.cos_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
|
353 |
+
k_sin = self.sin_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
|
354 |
+
|
355 |
+
q_cos = k_cos[..., -q.shape[2]:, :]
|
356 |
+
q_sin = k_sin[..., -q.shape[2]:, :]
|
357 |
+
|
358 |
+
q_embed = (q * q_cos) + (rotate_half(q) * q_sin)
|
359 |
+
k_embed = (k * k_cos) + (rotate_half(k) * k_sin)
|
360 |
+
return q_embed, k_embed
|
361 |
+
|
362 |
+
|
363 |
+
class LinearScalingRotaryEmbedding(RotaryEmbedding):
|
364 |
+
"""RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
365 |
+
|
366 |
+
def __init__(self, dim, max_position_embeddings=32768, base=10000, device=None, scaling_factor=1.0):
|
367 |
+
self.scaling_factor = scaling_factor
|
368 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
369 |
+
|
370 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
371 |
+
self.max_seq_len_cached = seq_len
|
372 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
|
373 |
+
t = t / self.scaling_factor
|
374 |
+
|
375 |
+
freqs = torch.outer(t, self.inv_freq)
|
376 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
377 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
378 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
379 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
380 |
+
|
381 |
+
|
382 |
+
class DynamicNTKScalingRotaryEmbedding(RotaryEmbedding):
|
383 |
+
"""RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
384 |
+
|
385 |
+
def __init__(self, dim, max_position_embeddings=32768, base=10000, device=None, scaling_factor=1.0):
|
386 |
+
self.scaling_factor = scaling_factor
|
387 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
388 |
+
|
389 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
390 |
+
self.max_seq_len_cached = seq_len
|
391 |
+
|
392 |
+
if seq_len > self.max_position_embeddings:
|
393 |
+
base = self.base * (
|
394 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
395 |
+
) ** (self.dim / (self.dim - 2))
|
396 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.float32).to(device) / self.dim))
|
397 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
398 |
+
|
399 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
400 |
+
|
401 |
+
freqs = torch.outer(t, self.inv_freq)
|
402 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
403 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
404 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
405 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
406 |
+
|
407 |
+
|
408 |
+
class YarnRotaryEmbedding(torch.nn.Module):
|
409 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0, beta_slow=2, beta_fast=128):
|
410 |
+
super().__init__()
|
411 |
+
|
412 |
+
self.base = base
|
413 |
+
self.dim = dim
|
414 |
+
self.scaling_factor = scaling_factor
|
415 |
+
self.beta_slow = beta_slow
|
416 |
+
self.beta_fast = beta_fast
|
417 |
+
self.max_position_embeddings = max_position_embeddings
|
418 |
+
|
419 |
+
self._set_cos_sin_cache(
|
420 |
+
seq_len=math.ceil(max_position_embeddings * scaling_factor), device=device, dtype=torch.get_default_dtype()
|
421 |
+
)
|
422 |
+
|
423 |
+
def _get_factor(self):
|
424 |
+
# the dimension whose index is smaller than fast_dim rotates more than beta_fast
|
425 |
+
fast_dim = self.dim / 2 * (math.log(self.max_position_embeddings / (2 * math.pi * self.beta_fast)) / math.log(self.base))
|
426 |
+
fast_dim = max(math.floor(fast_dim), 0)
|
427 |
+
# the dimension whose index is bigger than slow_dim rotates less than beta_slow
|
428 |
+
slow_dim = self.dim / 2 * (math.log(self.max_position_embeddings / (2 * math.pi * self.beta_slow)) / math.log(self.base))
|
429 |
+
slow_dim = min(math.ceil(slow_dim), self.dim - 1)
|
430 |
+
|
431 |
+
if fast_dim == slow_dim:
|
432 |
+
slow_dim += 0.001
|
433 |
+
|
434 |
+
# NOTE: very important to use full precision here so that the factor is correct
|
435 |
+
dim_arange = torch.arange(0, self.dim // 2, dtype=torch.float32)
|
436 |
+
dim_factor = (dim_arange - fast_dim) / (slow_dim - fast_dim)
|
437 |
+
dim_factor = torch.clamp(dim_factor, 0, 1)
|
438 |
+
|
439 |
+
# align with the paper notation
|
440 |
+
return (1 - dim_factor)
|
441 |
+
|
442 |
+
def _get_temperature(self):
|
443 |
+
if self.scaling_factor <= 1:
|
444 |
+
return 1.0
|
445 |
+
return 0.07 * math.log(self.scaling_factor) + 1.0
|
446 |
+
|
447 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
448 |
+
dim_arange = torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim
|
449 |
+
# dim / 2
|
450 |
+
freq = self.base ** dim_arange
|
451 |
+
theta = 1 / freq
|
452 |
+
interleave_theta = theta / self.scaling_factor
|
453 |
+
|
454 |
+
factor = self._get_factor().to(device)
|
455 |
+
yarn_theta = factor * theta + (1 - factor) * interleave_theta
|
456 |
+
self.register_buffer("inv_freq", yarn_theta, persistent=False)
|
457 |
+
|
458 |
+
t = torch.arange(seq_len, device=device, dtype=torch.float32)
|
459 |
+
freqs = torch.outer(t, self.inv_freq)
|
460 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
461 |
+
|
462 |
+
# get attention temperature
|
463 |
+
temperature = self._get_temperature()
|
464 |
+
|
465 |
+
self.register_buffer("cos_cached", emb.cos() * temperature, persistent=False)
|
466 |
+
self.register_buffer("sin_cached", emb.sin() * temperature, persistent=False)
|
467 |
+
self.max_seq_len_cached = seq_len
|
468 |
+
|
469 |
+
def forward(self, q, k, position_ids):
|
470 |
+
seq_len = max(position_ids.max().item() + 1, k.shape[2])
|
471 |
+
|
472 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
473 |
+
if seq_len > self.max_seq_len_cached:
|
474 |
+
self.scaling_factor = seq_len / self.max_position_embeddings
|
475 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=k.device, dtype=k.dtype)
|
476 |
+
|
477 |
+
k_cos = self.cos_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
|
478 |
+
k_sin = self.sin_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
|
479 |
+
|
480 |
+
q_cos = k_cos[..., -q.shape[2]:, :]
|
481 |
+
q_sin = k_sin[..., -q.shape[2]:, :]
|
482 |
+
|
483 |
+
q_embed = (q * q_cos) + (rotate_half(q) * q_sin)
|
484 |
+
k_embed = (k * k_cos) + (rotate_half(k) * k_sin)
|
485 |
+
return q_embed, k_embed
|
486 |
+
|
487 |
+
|
488 |
+
class YarnDynamicTemperatureRotaryEmbedding(torch.nn.Module):
|
489 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0, beta_slow=2, beta_fast=128):
|
490 |
+
super().__init__()
|
491 |
+
|
492 |
+
self.base = base
|
493 |
+
self.dim = dim
|
494 |
+
self.scaling_factor = scaling_factor
|
495 |
+
self.beta_slow = beta_slow
|
496 |
+
self.beta_fast = beta_fast
|
497 |
+
self.max_position_embeddings = max_position_embeddings
|
498 |
+
|
499 |
+
self._set_cos_sin_cache(
|
500 |
+
seq_len=math.ceil(max_position_embeddings * scaling_factor), device=device, dtype=torch.get_default_dtype()
|
501 |
+
)
|
502 |
+
|
503 |
+
def _get_factor(self):
|
504 |
+
# the dimension whose index is smaller than fast_dim rotates more than beta_fast
|
505 |
+
fast_dim = self.dim / 2 * (math.log(self.max_position_embeddings / (2 * math.pi * self.beta_fast)) / math.log(self.base))
|
506 |
+
fast_dim = max(math.floor(fast_dim), 0)
|
507 |
+
# the dimension whose index is bigger than slow_dim rotates less than beta_slow
|
508 |
+
slow_dim = self.dim / 2 * (math.log(self.max_position_embeddings / (2 * math.pi * self.beta_slow)) / math.log(self.base))
|
509 |
+
slow_dim = min(math.ceil(slow_dim), self.dim - 1)
|
510 |
+
|
511 |
+
if fast_dim == slow_dim:
|
512 |
+
slow_dim += 0.001
|
513 |
+
|
514 |
+
# NOTE: very important to use full precision here so that the factor is correct
|
515 |
+
dim_arange = torch.arange(0, self.dim // 2, dtype=torch.float32)
|
516 |
+
dim_factor = (dim_arange - fast_dim) / (slow_dim - fast_dim)
|
517 |
+
dim_factor = torch.clamp(dim_factor, 0, 1)
|
518 |
+
|
519 |
+
# align with the paper notation
|
520 |
+
return (1 - dim_factor)
|
521 |
+
|
522 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
523 |
+
dim_arange = torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim
|
524 |
+
# dim / 2
|
525 |
+
freq = self.base ** dim_arange
|
526 |
+
theta = 1 / freq
|
527 |
+
interleave_theta = theta / self.scaling_factor
|
528 |
+
|
529 |
+
factor = self._get_factor().to(device)
|
530 |
+
yarn_theta = factor * theta + (1 - factor) * interleave_theta
|
531 |
+
self.register_buffer("inv_freq", yarn_theta, persistent=False)
|
532 |
+
|
533 |
+
positions = torch.arange(seq_len, device=device, dtype=torch.float32)
|
534 |
+
freqs = torch.outer(positions, self.inv_freq)
|
535 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
536 |
+
|
537 |
+
# NOTE: get attention temperature that will be applied on the query vector
|
538 |
+
# temperature = torch.log(positions + 1) / math.log(self.max_position_embeddings)
|
539 |
+
temperature = (0.07 * torch.log((positions + 1) / self.max_position_embeddings) + 1) ** 2
|
540 |
+
temperature[:self.max_position_embeddings] = 1
|
541 |
+
self.register_buffer("temperature", temperature.unsqueeze(1), persistent=False)
|
542 |
+
|
543 |
+
self.register_buffer("cos_cached", emb.cos(), persistent=False)
|
544 |
+
self.register_buffer("sin_cached", emb.sin(), persistent=False)
|
545 |
+
self.max_seq_len_cached = seq_len
|
546 |
+
|
547 |
+
def forward(self, q, k, position_ids):
|
548 |
+
seq_len = max(position_ids.max().item() + 1, k.shape[2])
|
549 |
+
|
550 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
551 |
+
if seq_len > self.max_seq_len_cached:
|
552 |
+
self.scaling_factor = seq_len / self.max_position_embeddings
|
553 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=k.device, dtype=k.dtype)
|
554 |
+
|
555 |
+
# batch_size, 1, key_len, head_dim
|
556 |
+
k_cos = self.cos_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
|
557 |
+
k_sin = self.sin_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
|
558 |
+
|
559 |
+
q_cos = k_cos[..., -q.shape[2]:, :]
|
560 |
+
q_sin = k_sin[..., -q.shape[2]:, :]
|
561 |
+
|
562 |
+
q_position_ids = position_ids[:, -q.shape[2]:]
|
563 |
+
temperature = self.temperature[q_position_ids].to(dtype=k.dtype).unsqueeze(1)
|
564 |
+
q_cos = q_cos * temperature
|
565 |
+
q_sin = q_sin * temperature
|
566 |
+
|
567 |
+
q_embed = (q * q_cos) + (rotate_half(q) * q_sin)
|
568 |
+
k_embed = (k * k_cos) + (rotate_half(k) * k_sin)
|
569 |
+
return q_embed, k_embed
|
570 |
+
|
571 |
+
|
572 |
+
class YarnDynamicTemperatureLogNRotaryEmbedding(torch.nn.Module):
|
573 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0, beta_slow=2, beta_fast=128):
|
574 |
+
super().__init__()
|
575 |
+
|
576 |
+
self.base = base
|
577 |
+
self.dim = dim
|
578 |
+
self.scaling_factor = scaling_factor
|
579 |
+
self.beta_slow = beta_slow
|
580 |
+
self.beta_fast = beta_fast
|
581 |
+
self.max_position_embeddings = max_position_embeddings
|
582 |
+
|
583 |
+
self._set_cos_sin_cache(
|
584 |
+
seq_len=math.ceil(max_position_embeddings * scaling_factor), device=device, dtype=torch.get_default_dtype()
|
585 |
+
)
|
586 |
+
|
587 |
+
def _get_factor(self):
|
588 |
+
# the dimension whose index is smaller than fast_dim rotates more than beta_fast
|
589 |
+
fast_dim = self.dim / 2 * (math.log(self.max_position_embeddings / (2 * math.pi * self.beta_fast)) / math.log(self.base))
|
590 |
+
fast_dim = max(math.floor(fast_dim), 0)
|
591 |
+
# the dimension whose index is bigger than slow_dim rotates less than beta_slow
|
592 |
+
slow_dim = self.dim / 2 * (math.log(self.max_position_embeddings / (2 * math.pi * self.beta_slow)) / math.log(self.base))
|
593 |
+
slow_dim = min(math.ceil(slow_dim), self.dim - 1)
|
594 |
+
|
595 |
+
if fast_dim == slow_dim:
|
596 |
+
slow_dim += 0.001
|
597 |
+
|
598 |
+
# NOTE: very important to use full precision here so that the factor is correct
|
599 |
+
dim_arange = torch.arange(0, self.dim // 2, dtype=torch.float32)
|
600 |
+
dim_factor = (dim_arange - fast_dim) / (slow_dim - fast_dim)
|
601 |
+
dim_factor = torch.clamp(dim_factor, 0, 1)
|
602 |
+
|
603 |
+
# align with the paper notation
|
604 |
+
return (1 - dim_factor)
|
605 |
+
|
606 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
607 |
+
dim_arange = torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim
|
608 |
+
# dim / 2
|
609 |
+
freq = self.base ** dim_arange
|
610 |
+
theta = 1 / freq
|
611 |
+
interleave_theta = theta / self.scaling_factor
|
612 |
+
|
613 |
+
factor = self._get_factor().to(device)
|
614 |
+
yarn_theta = factor * theta + (1 - factor) * interleave_theta
|
615 |
+
self.register_buffer("inv_freq", yarn_theta, persistent=False)
|
616 |
+
|
617 |
+
positions = torch.arange(seq_len, device=device, dtype=torch.float32)
|
618 |
+
freqs = torch.outer(positions, self.inv_freq)
|
619 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
620 |
+
|
621 |
+
# NOTE: get attention temperature that will be applied on the query vector
|
622 |
+
temperature = torch.log(positions + 1) / math.log(self.max_position_embeddings)
|
623 |
+
# temperature = (0.07 * torch.log((positions + 1) / self.max_position_embeddings) + 1) ** 2
|
624 |
+
temperature[:self.max_position_embeddings] = 1
|
625 |
+
self.register_buffer("temperature", temperature.unsqueeze(1), persistent=False)
|
626 |
+
|
627 |
+
self.register_buffer("cos_cached", emb.cos(), persistent=False)
|
628 |
+
self.register_buffer("sin_cached", emb.sin(), persistent=False)
|
629 |
+
self.max_seq_len_cached = seq_len
|
630 |
+
|
631 |
+
def forward(self, q, k, position_ids):
|
632 |
+
seq_len = max(position_ids.max().item() + 1, k.shape[2])
|
633 |
+
|
634 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
635 |
+
if seq_len > self.max_seq_len_cached:
|
636 |
+
self.scaling_factor = seq_len / self.max_position_embeddings
|
637 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=k.device, dtype=k.dtype)
|
638 |
+
|
639 |
+
# batch_size, 1, key_len, head_dim
|
640 |
+
k_cos = self.cos_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
|
641 |
+
k_sin = self.sin_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
|
642 |
+
|
643 |
+
q_cos = k_cos[..., -q.shape[2]:, :]
|
644 |
+
q_sin = k_sin[..., -q.shape[2]:, :]
|
645 |
+
|
646 |
+
q_position_ids = position_ids[:, -q.shape[2]:]
|
647 |
+
temperature = self.temperature[q_position_ids].to(dtype=k.dtype).unsqueeze(1)
|
648 |
+
q_cos = q_cos * temperature
|
649 |
+
q_sin = q_sin * temperature
|
650 |
+
|
651 |
+
q_embed = (q * q_cos) + (rotate_half(q) * q_sin)
|
652 |
+
k_embed = (k * k_cos) + (rotate_half(k) * k_sin)
|
653 |
+
return q_embed, k_embed
|
654 |
+
|
655 |
+
|
656 |
+
class Llama3RotaryEmbedding(torch.nn.Module):
|
657 |
+
def __init__(self, dim, max_position_embeddings=8192, base=10000, device=None, scaling_factor=1.0, original_max_position_embeddings=8192, low_freq_factor=1, high_freq_factor=4):
|
658 |
+
super().__init__()
|
659 |
+
|
660 |
+
self.base = base
|
661 |
+
self.dim = dim
|
662 |
+
self.scaling_factor = scaling_factor
|
663 |
+
self.original_max_position_embeddings = original_max_position_embeddings
|
664 |
+
self.max_position_embeddings = max(max_position_embeddings, int(original_max_position_embeddings * scaling_factor))
|
665 |
+
self.low_freq_factor = low_freq_factor
|
666 |
+
self.high_freq_factor = high_freq_factor
|
667 |
+
|
668 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.float32).to(device) / self.dim))
|
669 |
+
low_freq_wavelen = self.original_max_position_embeddings / low_freq_factor
|
670 |
+
high_freq_wavelen = self.original_max_position_embeddings / high_freq_factor
|
671 |
+
new_freqs = []
|
672 |
+
for freq in inv_freq:
|
673 |
+
wavelen = 2 * math.pi / freq
|
674 |
+
if wavelen < high_freq_wavelen:
|
675 |
+
new_freqs.append(freq)
|
676 |
+
elif wavelen > low_freq_wavelen:
|
677 |
+
new_freqs.append(freq / scaling_factor)
|
678 |
+
else:
|
679 |
+
assert low_freq_wavelen != high_freq_wavelen
|
680 |
+
smooth = (self.original_max_position_embeddings / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
|
681 |
+
new_freqs.append((1 - smooth) * freq / scaling_factor + smooth * freq)
|
682 |
+
inv_freq = torch.tensor(new_freqs, dtype=inv_freq.dtype, device=inv_freq.device)
|
683 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
684 |
+
|
685 |
+
self._set_cos_sin_cache(seq_len=self.max_position_embeddings, device=device)
|
686 |
+
|
687 |
+
def _set_cos_sin_cache(self, seq_len, device):
|
688 |
+
self.max_seq_len_cached = seq_len
|
689 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
|
690 |
+
freqs = torch.outer(t, self.inv_freq)
|
691 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
692 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
693 |
+
self.register_buffer("cos_cached", emb.cos(), persistent=False)
|
694 |
+
self.register_buffer("sin_cached", emb.sin(), persistent=False)
|
695 |
+
|
696 |
+
def forward(self, q, k, position_ids):
|
697 |
+
seq_len = max(position_ids.max().item() + 1, k.shape[2])
|
698 |
+
|
699 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
700 |
+
if seq_len > self.max_seq_len_cached:
|
701 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=k.device)
|
702 |
+
|
703 |
+
k_cos = self.cos_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
|
704 |
+
k_sin = self.sin_cached[position_ids].to(dtype=k.dtype).unsqueeze(1)
|
705 |
+
|
706 |
+
q_cos = k_cos[..., -q.shape[2]:, :]
|
707 |
+
q_sin = k_sin[..., -q.shape[2]:, :]
|
708 |
+
|
709 |
+
q_embed = (q * q_cos) + (rotate_half(q) * q_sin)
|
710 |
+
k_embed = (k * k_cos) + (rotate_half(k) * k_sin)
|
711 |
+
return q_embed, k_embed
|
special_tokens_map.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>"
|
5 |
+
],
|
6 |
+
"eos_token": {
|
7 |
+
"content": "<|im_end|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"pad_token": {
|
14 |
+
"content": "<|endoftext|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
}
|
20 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"151643": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151644": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"151645": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"additional_special_tokens": [
|
30 |
+
"<|im_start|>",
|
31 |
+
"<|im_end|>"
|
32 |
+
],
|
33 |
+
"bos_token": null,
|
34 |
+
"chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
35 |
+
"clean_up_tokenization_spaces": false,
|
36 |
+
"eos_token": "<|im_end|>",
|
37 |
+
"errors": "replace",
|
38 |
+
"model_max_length": 131072,
|
39 |
+
"pad_token": "<|endoftext|>",
|
40 |
+
"padding_side": "left",
|
41 |
+
"split_special_tokens": false,
|
42 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
43 |
+
"unk_token": null
|
44 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2033b811b3474a96f5c2c4757d753e269ed2ef5e1aef1faaf2fc55a9c4b32b06
|
3 |
+
size 7480
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|