File size: 16,747 Bytes
1162222
 
 
06c7ac0
 
 
 
 
 
 
 
 
1162222
 
 
 
06c7ac0
1162222
 
 
 
 
06c7ac0
 
 
1162222
 
 
06c7ac0
 
 
 
 
 
1162222
 
 
06c7ac0
820ce9a
1162222
 
 
06c7ac0
 
 
 
 
1162222
 
 
06c7ac0
1162222
 
 
 
06c7ac0
1162222
 
 
 
06c7ac0
1162222
06c7ac0
 
 
1162222
 
 
 
06c7ac0
1162222
 
 
06c7ac0
 
 
 
 
1162222
06c7ac0
1162222
 
 
 
 
820ce9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1162222
 
 
 
 
 
06c7ac0
 
 
 
 
 
 
 
 
1162222
 
 
06c7ac0
 
 
 
 
1162222
 
 
06c7ac0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1162222
 
 
 
06c7ac0
1162222
 
 
06c7ac0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1162222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06c7ac0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1162222
 
 
06c7ac0
1162222
 
 
06c7ac0
1162222
 
 
06c7ac0
 
 
 
1162222
 
 
06c7ac0
1162222
 
 
06c7ac0
1162222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06c7ac0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
---
library_name: peft
base_model: stabilityai/stablelm-3b-4e1t
license: mit
language:
- en
metrics:
- bleu
- bertscore
- accuracy
tags:
- medical
---

# Model Card for Model ID

Welcome to StableMed , it's a stable 3b llm - alpha fine tuned model for Medical Question and Answering.

## Model Details

### Model Description

This is a stable 3b finetune for medical QnA using MedQuad. 
It's intended for education in public health and sanitation, 
specifically to improve our understanding of outreach and communication.



- **Developed by:** [Tonic](https://huggingface.co/Tonic)
- **Shared by [optional]:** [Tonic](https://huggingface.co/Tonic)
- **Model type:** stable LM 3b - Alpha
- **Language(s) (NLP):** English
- **License:** MIT
- **Finetuned from model [optional]:** [stabilityai/stablelm-3b-4e1t](https://huggingface.co/stabilityai/stablelm-3b-4e1t)

### Model Sources [optional]

- **Repository:** [Tonic/stablemed](https://huggingface.co/Tonic/stablemed)
- **Demo :** [Tonic/StableMed_Chat](https://huggingface.co/Tonic/StableMed_Chat)

## Uses

Use this model for educational purposes only , do not use for decision support in the wild.

Use this model for Medical Q n A.

Use this model as a educational tool for "miniature" models.

### Direct Use

Medical Question and Answering


### Downstream Use [optional]

Finetune this model to work in a network or swarm of medical finetunes.


### Out-of-Scope Use

do not use this model in the wild.

do not use this model directly.

do not use this model for real world decision support.

## Bias, Risks, and Limitations


[We use Giskard for evaluation - Coming Soon!]

### Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. 

DO NOT USE THIS MODEL WITHOUT EVALUATION

DO NOT USE THIS MODEL WITHOUT BENCHMARKING

DO NOT USE THIS MODEL WITHOUT FURTHER FINETUNING

## How to Get Started with the Model

Use the code below to get started with the model.

```Python
from transformers import AutoTokenizer, MistralForCausalLM
import torch
import gradio as gr
import random
from textwrap import wrap
from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM
from peft import PeftModel, PeftConfig
import torch
import gradio as gr
import os

hf_token = os.environ.get('HUGGINGFACE_TOKEN')

# Functions to Wrap the Prompt Correctly
def wrap_text(text, width=90):
    lines = text.split('\n')
    wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
    wrapped_text = '\n'.join(wrapped_lines)
    return wrapped_text
def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"):

    # Combine user input and system prompt
    formatted_input = f"[INSTRUCTION]{system_prompt}[QUESTION]{user_input}"

    # Encode the input text
    encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False)
    model_inputs = encodeds.to(device)

    # Generate a response using the model
    output = model.generate(
        **model_inputs,
        max_length=max_length,
        use_cache=True,
        early_stopping=True,
        bos_token_id=model.config.bos_token_id,
        eos_token_id=model.config.eos_token_id,
        pad_token_id=model.config.eos_token_id,
        temperature=0.1,
        do_sample=True
    )

    # Decode the response
    response_text = tokenizer.decode(output[0], skip_special_tokens=True)

    return response_text

# Define the device
device = "cuda" if torch.cuda.is_available() else "cpu"

# Use the base model's ID
base_model_id = "stabilityai/stablelm-3b-4e1t"
model_directory = "Tonic/stablemed"

# Instantiate the Tokenizer
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-3b-4e1t", trust_remote_code=True, padding_side="left")
# tokenizer = AutoTokenizer.from_pretrained("Tonic/stablemed", trust_remote_code=True, padding_side="left")
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = 'left'

# Load the PEFT model
peft_config = PeftConfig.from_pretrained("Tonic/stablemed", token=hf_token)
peft_model = MistralForCausalLM.from_pretrained("stabilityai/stablelm-3b-4e1t", trust_remote_code=True)
peft_model = PeftModel.from_pretrained(peft_model, "Tonic/stablemed", token=hf_token)

class ChatBot:
    def __init__(self):
        self.history = []

    def predict(self, user_input, system_prompt="You are an expert medical analyst:"):
        # Combine user input and system prompt
        formatted_input = f"[INSTRUCTION:]{system_prompt}[QUESTION:] {user_input}"

        # Encode user input
        user_input_ids = tokenizer.encode(formatted_input, return_tensors="pt")

        # Concatenate the user input with chat history
        if len(self.history) > 0:
            chat_history_ids = torch.cat([self.history, user_input_ids], dim=-1)
        else:
            chat_history_ids = user_input_ids

        # Generate a response using the PEFT model
        response = peft_model.generate(input_ids=chat_history_ids, max_length=400, pad_token_id=tokenizer.eos_token_id)

        # Update chat history
        self.history = chat_history_ids

        # Decode and return the response
        response_text = tokenizer.decode(response[0], skip_special_tokens=True)
        return response_text

bot = ChatBot()

title = "👋🏻Welcome to Tonic's StableMed Chat🚀"
description = "You can use this Space to test out the current model [StableMed](https://huggingface.co/Tonic/stablemed) or You can also use 😷StableMed⚕️ on your own data & in your own way by cloning this space. 🧬🔬🔍 Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)"             "
examples = [["What is the proper treatment for buccal herpes?", "Please provide information on the most effective antiviral medications and home remedies for treating buccal herpes."]]
iface = gr.Interface(
    fn=bot.predict,
    title=title,
    description=description,
    examples=examples,
    inputs=["text", "text"],  # Take user input and system prompt separately
    outputs="text",
    theme="ParityError/Anime"
)
iface.launch()
```

## Training Details

### Training Data


[Dataset](https://huggingface.co/datasets/keivalya/MedQuad-MedicalQnADataset) 

```json
output
Dataset({
    features: ['qtype', 'Question', 'Answer'],
    num_rows: 16407
})
```

### Training Procedure 

```json
trainable params: 12940288 || all params: 1539606528 || trainable%: 0.8404931886596937
```

Using Lora 

#### Preprocessing [optional]

Original:

```json
StableLMEpochForCausalLM(
  (model): StableLMEpochModel(
    (embed_tokens): Embedding(50304, 2560)
    (layers): ModuleList(
      (0-31): 32 x DecoderLayer(
        (self_attn): Attention(
          (q_proj): Linear4bit(in_features=2560, out_features=2560, bias=False)
          (k_proj): Linear4bit(in_features=2560, out_features=2560, bias=False)
          (v_proj): Linear4bit(in_features=2560, out_features=2560, bias=False)
          (o_proj): Linear4bit(in_features=2560, out_features=2560, bias=False)
          (rotary_emb): RotaryEmbedding()
        )
        (mlp): MLP(
          (gate_proj): Linear4bit(in_features=2560, out_features=6912, bias=False)
          (up_proj): Linear4bit(in_features=2560, out_features=6912, bias=False)
          (down_proj): Linear4bit(in_features=6912, out_features=2560, bias=False)
          (act_fn): SiLU()
        )
        (input_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)
        (post_attention_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)
      )
    )
    (norm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)
  )
  (lm_head): Linear(in_features=2560, out_features=50304, bias=False)
)
```


#### Training Hyperparameters

- **Training regime:**  <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->

#### Speeds, Sizes, Times [optional]

```json
TrainOutput(global_step=2051, training_loss=0.6156479549198718, metrics={'train_runtime': 22971.4974, 'train_samples_per_second': 0.357, 'train_steps_per_second': 0.089, 'total_flos': 6.5950444363776e+16, 'train_loss': 0.6156479549198718, 'epoch': 0.5})
```

## Results

| Value | Measurement |
|-------|-------------|
| 50    | 1.427000    |
| 100   | 0.763200    |
| 150   | 0.708200    |
| 200   | 0.662300    |
| 250   | 0.650900    |
| 300   | 0.617400    |
| 350   | 0.602900    |
| 400   | 0.608900    |
| 450   | 0.596100    |
| 500   | 0.602000    |
| 550   | 0.594700    |
| 600   | 0.584700    |
| 650   | 0.611000    |
| 700   | 0.558700    |
| 750   | 0.616300    |
| 800   | 0.568700    |
| 850   | 0.597300    |
| 900   | 0.607400    |
| 950   | 0.563200    |
| 1000  | 0.602900    |
| 1050  | 0.594900    |
| 1100  | 0.583000    |
| 1150  | 0.604500    |
| 1200  | 0.547400    |
| 1250  | 0.586600    |
| 1300  | 0.554300    |
| 1350  | 0.581000    |
| 1400  | 0.578900    |
| 1450  | 0.563200    |
| 1500  | 0.556800    |
| 1550  | 0.570300    |
| 1600  | 0.599800    |
| 1650  | 0.556000    |
| 1700  | 0.592500    |
| 1750  | 0.597200    |
| 1800  | 0.559100    |
| 1850  | 0.586100    |
| 1900  | 0.581100    |
| 1950  | 0.589400    |
| 2000  | 0.581100    |
| 2050  | 0.533100    |


## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]

## Technical Specifications [optional]

### Model Architecture and Objective

with LORA :

```json
PeftModelForCausalLM(
  (base_model): LoraModel(
    (model): StableLMEpochForCausalLM(
      (model): StableLMEpochModel(
        (embed_tokens): Embedding(50304, 2560)
        (layers): ModuleList(
          (0-31): 32 x DecoderLayer(
            (self_attn): Attention(
              (q_proj): Linear4bit(
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.05, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=2560, out_features=8, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=8, out_features=2560, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
                (base_layer): Linear4bit(in_features=2560, out_features=2560, bias=False)
              )
              (k_proj): Linear4bit(
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.05, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=2560, out_features=8, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=8, out_features=2560, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
                (base_layer): Linear4bit(in_features=2560, out_features=2560, bias=False)
              )
              (v_proj): Linear4bit(
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.05, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=2560, out_features=8, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=8, out_features=2560, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
                (base_layer): Linear4bit(in_features=2560, out_features=2560, bias=False)
              )
              (o_proj): Linear4bit(
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.05, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=2560, out_features=8, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=8, out_features=2560, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
                (base_layer): Linear4bit(in_features=2560, out_features=2560, bias=False)
              )
              (rotary_emb): RotaryEmbedding()
            )
            (mlp): MLP(
              (gate_proj): Linear4bit(
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.05, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=2560, out_features=8, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=8, out_features=6912, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
                (base_layer): Linear4bit(in_features=2560, out_features=6912, bias=False)
              )
              (up_proj): Linear4bit(
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.05, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=2560, out_features=8, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=8, out_features=6912, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
                (base_layer): Linear4bit(in_features=2560, out_features=6912, bias=False)
              )
              (down_proj): Linear4bit(
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.05, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=6912, out_features=8, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=8, out_features=2560, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
                (base_layer): Linear4bit(in_features=6912, out_features=2560, bias=False)
              )
              (act_fn): SiLU()
            )
            (input_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)
            (post_attention_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)
          )
        )
        (norm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True)
      )
      (lm_head): Linear(
        in_features=2560, out_features=50304, bias=False
        (lora_dropout): ModuleDict(
          (default): Dropout(p=0.05, inplace=False)
        )
        (lora_A): ModuleDict(
          (default): Linear(in_features=2560, out_features=8, bias=False)
        )
        (lora_B): ModuleDict(
          (default): Linear(in_features=8, out_features=50304, bias=False)
        )
        (lora_embedding_A): ParameterDict()
        (lora_embedding_B): ParameterDict()
      )
    )
  )
)
```

### Compute Infrastructure

GCS

#### Hardware

T4

#### Software

transformers
peft
torch
datasets

## Model Card Authors [optional]

[Tonic](https://huggingface.co/Tonic)

## Model Card Contact

[Tonic](https://huggingface.co/Tonic)

## Training procedure


The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16

### Framework versions


- PEFT 0.6.2.dev0