File size: 13,650 Bytes
10b1946
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f979f732e60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f979f732ef0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f979f732f80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f979f733010>", "_build": "<function ActorCriticPolicy._build at 0x7f979f7330a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f979f733130>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f979f7331c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f979f733250>", "_predict": "<function ActorCriticPolicy._predict at 0x7f979f7332e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f979f733370>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f979f733400>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f979f733490>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f979f720c80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688391886653169626, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALNAJ75FDCc/1czFve/z+r79Jpe9ehiyPQAAAAAAAAAAGqcwvesnrz/Ojra9TYn1vr2mu7xbwrW9AAAAAAAAAACGmBE+uBlZPwcxND5UcO++EsExPgpE/jwAAAAAAAAAAGYVgLynmXc+BivyvGuVib5DTJM7CJZbvAAAAAAAAAAAZuhYvBQWhjm88SY3M8tgMgZJzjpJZUq2AACAPwAAgD9AQ1m+tJqWPzNO574Cvgi/bbIkvjmuuL0AAAAAAAAAADOBnDyV4LE/kuXuPk5hjb53wUW8rqleuwAAAAAAAAAAGtBQvVsaiT2eWa69Vp1/voVApb01E9+8AAAAAAAAAABov5a+TbY1P21N3D3ZDQW/xIqQvmLrnT4AAAAAAAAAAGaWfLuPTiW6PiEns4oXT6mA2f45at7HMwAAgD8AAIA/5nFmPflDED4YNXC+HNiPvvypw72LMF69AAAAAAAAAACaU3u9sPZxP86Ktr1+Cx2/sF4svYhrRLwAAAAAAAAAADNBGT1bfzA/buJrvXksAb9xB9I89dNMPAAAAAAAAAAAs+NSvgVvcD+yClu+3wQCv/qNPL5koZk8AAAAAAAAAADT0iE+OsANPmkYnb6i31S+I1fsu8CgY7sAAAAAAAAAABWckb7nPQ4/Gc4lPXuCwb5w+Ci+MjBMPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV8gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHKm8neBQN2MAWyUS+CMAXSUR0CYKgOB19v1dX2UKGgGR0Bxuv/4qPOqaAdL7WgIR0CYKm9/BnBddX2UKGgGR0BwEtRZU1htaAdL/GgIR0CYKojWTX8PdX2UKGgGR0BzIwk9lmOEaAdNBQFoCEdAmCsceXAuZnV9lChoBkdAcgVPa+N96WgHS+toCEdAmCv/zWf9P3V9lChoBkdAcVoyXUpd8mgHS+hoCEdAmCy5O32EkHV9lChoBkdAckM1ZTyau2gHTUABaAhHQJgtTP8hs691fZQoaAZHQHEAUwaisXBoB0vvaAhHQJgtoUZeiSJ1fZQoaAZHQHAo97v5P/JoB013AWgIR0CYLa4bjtG/dX2UKGgGR0BwykMy8BdVaAdL82gIR0CYLgeMhougdX2UKGgGR0Bv8PTVlPJraAdL4WgIR0CYLvy1/lQudX2UKGgGR0Bvyz9If8uSaAdL72gIR0CYLvuBczIndX2UKGgGR0Bw0ThaTwDvaAdL9WgIR0CYLzDwpe/pdX2UKGgGR0By75rsSkCWaAdL+WgIR0CYL0mdiDujdX2UKGgGR0BuOvMr3CbdaAdL0GgIR0CYL/V8kUsWdX2UKGgGR0Bxp4feUILPaAdL6GgIR0CYMDRJ2+wldX2UKGgGR0BxAbDJlrdnaAdNAwFoCEdAmDCGZuyeI3V9lChoBkdAcQFwJPZZjmgHS+xoCEdAmDD6RlpXZHV9lChoBkdAcHXLTQVsUWgHS/poCEdAmDIl8w5/9nV9lChoBkdAcVtECNjslmgHS/RoCEdAmDMpMcp9Z3V9lChoBkdAcmth99c8kmgHS/RoCEdAmDQxHG0eEXV9lChoBkdAbhApT/ACXGgHS+RoCEdAmDRjBl+VknV9lChoBkdAcNWE/B3zMGgHS+NoCEdAmDS7KeTV2HV9lChoBkdAcT1LTx5LRWgHS+VoCEdAmDTaGL1mJ3V9lChoBkdAcd0XlKbrkmgHTQMBaAhHQJg2WjsUqQR1fZQoaAZHQHFdgLy+YdBoB0vraAhHQJg21chTwUh1fZQoaAZHQHHpBEWqLjxoB0vyaAhHQJg3FUNrj5t1fZQoaAZHQHIipyIYWLxoB0v2aAhHQJg3iVgQYk51fZQoaAZHQHGGN83Mpw1oB0v4aAhHQJg3u/bj94x1fZQoaAZHQHDU5Du0CzVoB0vvaAhHQJg4I/JNj9Z1fZQoaAZHQHL3Iz3yqdZoB0vqaAhHQJg4OKwY+B91fZQoaAZHQG0OVE3Kji5oB0vgaAhHQJg4Nm5Dqnp1fZQoaAZHQHEdvE87p3ZoB0vwaAhHQJg5NBTn7pF1fZQoaAZHQGRr7655JK9oB03oA2gIR0CYOfol2NeddX2UKGgGR0BxpHb349HMaAdL6WgIR0CYOkFX7tRfdX2UKGgGR0BxPdX3g1m8aAdLy2gIR0CYO8Ye1a4ddX2UKGgGR0Bx9HKMefZmaAdL+GgIR0CYO9jesPrfdX2UKGgGR0BxjDTodMkAaAdL5GgIR0CYPNWKuSwGdX2UKGgGR0ByVTfxc3VDaAdNEAFoCEdAmD3DxwyZa3V9lChoBkdAcsVl9Sde6mgHTRYBaAhHQJg+PNB4Uvh1fZQoaAZHQHJDulsP8Q9oB0vhaAhHQJg+b0lJHy51fZQoaAZHQHBeTin5zo5oB0vWaAhHQJg+hDlYEGJ1fZQoaAZHQHH2rAUL2HtoB0vvaAhHQJg/reHi3od1fZQoaAZHQHDSdTo+wC9oB0vxaAhHQJhAQ54nndR1fZQoaAZHQHFqmGM4tHxoB0vyaAhHQJhAiYrrgO11fZQoaAZHQHDfbwvxpcpoB0vvaAhHQJhA2dK/VRV1fZQoaAZHQHOooeHSF49oB0v2aAhHQJhBKX0Gu9x1fZQoaAZHQHF6VWKdhApoB0v/aAhHQJhBby+YdAB1fZQoaAZHQHKZxEfDDTBoB0vTaAhHQJhBz5mAbyZ1fZQoaAZHQHJ6+0b961NoB00FAWgIR0CYQkjTKDChdX2UKGgGR0Bw+ZmYjSogaAdLzmgIR0CYQrtWMju8dX2UKGgGR0ByRiIqLCN0aAdNEgFoCEdAmEMbIDHOr3V9lChoBkdAcXL889wFT2gHS+VoCEdAmEM58WsRx3V9lChoBkdAbZsdq+JxemgHS+NoCEdAmERcLSeAeHV9lChoBkdAcl4pEx7AtWgHTQYBaAhHQJhEmz1K5Cp1fZQoaAZHQHK2pJ5E+gVoB0viaAhHQJhEvlp48lp1fZQoaAZHQG8fvSDyvs9oB0vpaAhHQJhE96fJ3gV1fZQoaAZHQHI3340uUUxoB00AAWgIR0CYRVVuJk5IdX2UKGgGR0BwX0yqMm4RaAdL4mgIR0CYRY+hGpdbdX2UKGgGR0BwZs0Nz8xcaAdL1GgIR0CYRfLYf4h2dX2UKGgGR0Bw1lr6+FlDaAdL52gIR0CYRgghKUV0dX2UKGgGR0BwK2hpQDV6aAdL6GgIR0CYRqKE384xdX2UKGgGR0BzAgwIt16maAdL/mgIR0CYRsEcbR4RdX2UKGgGR0By6xKYiPhiaAdL82gIR0CYRx9IPK+0dX2UKGgGR0BtddVvMr3CaAdL7WgIR0CYR1ntv4ucdX2UKGgGR0BvOoYzi0fHaAdL4WgIR0CYR+5fdAPedX2UKGgGR0BwXfzH0btJaAdL+2gIR0CYSBai9IwudX2UKGgGR0Bx/WFWXC0oaAdL32gIR0CYSGHoouwpdX2UKGgGR0BzBFGz8gp0aAdNAQFoCEdAmEkEVvddmnV9lChoBkdAbmjcDbJwKmgHS9NoCEdAmEl9ELH+63V9lChoBkdAbwvYISlFdGgHS+loCEdAmEnGBnSOR3V9lChoBkdAcJfsbedkKGgHS8BoCEdAmEn6guh9LHV9lChoBkdAcOkQQcxTKmgHS/RoCEdAmEpiz9jwx3V9lChoBkdAcTX3aBZpz2gHS/BoCEdAmEqA6p5u63V9lChoBkdAcmkvKEFnqWgHS9doCEdAmEreMl1KXnV9lChoBkdAclP2Ifr8i2gHTQIBaAhHQJhL/CdjG1h1fZQoaAZHQHEogTmGM4toB0v3aAhHQJhMX9l2/zt1fZQoaAZHQHDzQtBfKIVoB0v0aAhHQJhMa3VkMCt1fZQoaAZHQFOW4IrvsqtoB0ufaAhHQJhM0qTbFjx1fZQoaAZHQHFm7mhdt2toB0vsaAhHQJhM3uE25x11fZQoaAZHQHFrxGlQ/HJoB0v4aAhHQJhM6dupCKJ1fZQoaAZHQHEi+GfwqiJoB01NAWgIR0CYTSfJV81GdX2UKGgGR0BuXySPluFYaAdL4mgIR0CYTWsXizcAdX2UKGgGR0BtQb6UJOWTaAdL22gIR0CYTYhsZYPodX2UKGgGR0BxEFQBPsRhaAdLwWgIR0CYTkzIFNcodX2UKGgGR0BzIXWOIZZTaAdNFgFoCEdAmE5o51eSjnV9lChoBkdAcvtMS9M9KWgHS9BoCEdAmE9lKoQ4CXV9lChoBkdAb1iNVBD5TWgHS9poCEdAmE+CXdCVr3V9lChoBkdAcOXw9aEBbWgHS/poCEdAmE/a7ulXR3V9lChoBkdAcQYVrAP/aWgHTRIBaAhHQJhP6zIFNcp1fZQoaAZHQHBwJMURFqloB0vKaAhHQJhRF19v0iB1fZQoaAZHQHK8Cml67d1oB00QAWgIR0CYUVwmmce9dX2UKGgGR0BvFCrFOwgUaAdL1WgIR0CYUXXVLBbfdX2UKGgGR0BtshEtuk1uaAdL0mgIR0CYUc80UGmldX2UKGgGR0Bx9hAHE/B4aAdL+2gIR0CYUgT2FnIydX2UKGgGR0Bu11N8E3bVaAdL1mgIR0CYUkHZ9NN8dX2UKGgGR0BwsInDziCKaAdLzmgIR0CYUl4pc5bRdX2UKGgGR0Bw51ccENe/aAdL6WgIR0CYUn03Ov+wdX2UKGgGR0BxNELVnVXnaAdL8GgIR0CYUptOmBOIdX2UKGgGR0ByExCv5gw5aAdL9GgIR0CYU1fMwDeTdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}