File size: 1,924 Bytes
cf825c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af690b7
cf825c1
 
 
 
 
 
 
 
 
 
af690b7
cf825c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af690b7
 
 
 
 
 
 
 
 
cf825c1
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
library_name: peft
tags:
- parquet
- text-classification
datasets:
- tweet_eval
metrics:
- accuracy
base_model: vinai/bertweet-base
model-index:
- name: vinai_bertweet-base-finetuned-lora-tweet_eval_irony
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: tweet_eval
      type: tweet_eval
      config: irony
      split: validation
      args: irony
    metrics:
    - type: accuracy
      value: 0.7445026178010471
      name: accuracy
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vinai_bertweet-base-finetuned-lora-tweet_eval_irony

This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- accuracy: 0.7445

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8

### Training results

| accuracy | train_loss | epoch |
|:--------:|:----------:|:-----:|
| 0.5225   | None       | 0     |
| 0.6168   | 0.6819     | 0     |
| 0.7068   | 0.5850     | 1     |
| 0.7372   | 0.5168     | 2     |
| 0.7445   | 0.4934     | 3     |
| 0.7424   | 0.4738     | 4     |
| 0.7403   | 0.4611     | 5     |
| 0.7466   | 0.4516     | 6     |
| 0.7445   | 0.4374     | 7     |


### Framework versions

- PEFT 0.8.2
- Transformers 4.37.2
- Pytorch 2.2.0
- Datasets 2.16.1
- Tokenizers 0.15.2