File size: 3,004 Bytes
6dbcae9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5c8880
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dbcae9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
base_model: Orion-zhen/Meissa-Qwen2.5-7B-Instruct
datasets:
- anthracite-org/stheno-filtered-v1.1
- MinervaAI/Aesir-Preview
- Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
- anthracite-org/nopm_claude_writing_fixed
- Gryphe/Sonnet3.5-Charcard-Roleplay
- nothingiisreal/DirtyWritingPrompts
- Orion-zhen/tagged-pixiv-novel
language:
- zh
- en
license: gpl-3.0
pipeline_tag: text-generation
tags:
- llama-cpp
- gguf-my-repo
---

# Triangle104/Meissa-Qwen2.5-7B-Instruct-Q5_K_S-GGUF
This model was converted to GGUF format from [`Orion-zhen/Meissa-Qwen2.5-7B-Instruct`](https://huggingface.co/Orion-zhen/Meissa-Qwen2.5-7B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Orion-zhen/Meissa-Qwen2.5-7B-Instruct) for more details on the model.

---
Model details:
-
    Meissa is designated Lambda Orionis, forms Orion's head, and is a multiple star with a combined apparent magnitude of 3.33. Its name means the "shining one".

This model is fine tuned over writing and role playing datasets (maybe the first on qwen2.5-7b), aiming to enhance model's performance in novel writing and roleplaying.

The model is fine-tuned over Orion-zhen/Qwen2.5-7B-Instruct-Uncensored
Training details

I used SFT method. Datasets used are listed below:

    anthracite-org/stheno-filtered-v1.1
    MinervaAI/Aesir-Preview
    Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
    anthracite-org/nopm_claude_writing_fixed
    Gryphe/Sonnet3.5-Charcard-Roleplay
    nothingiisreal/DirtyWritingPrompts
    Orion-zhen/tagged-pixiv-novel

---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo Triangle104/Meissa-Qwen2.5-7B-Instruct-Q5_K_S-GGUF --hf-file meissa-qwen2.5-7b-instruct-q5_k_s.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo Triangle104/Meissa-Qwen2.5-7B-Instruct-Q5_K_S-GGUF --hf-file meissa-qwen2.5-7b-instruct-q5_k_s.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Meissa-Qwen2.5-7B-Instruct-Q5_K_S-GGUF --hf-file meissa-qwen2.5-7b-instruct-q5_k_s.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo Triangle104/Meissa-Qwen2.5-7B-Instruct-Q5_K_S-GGUF --hf-file meissa-qwen2.5-7b-instruct-q5_k_s.gguf -c 2048
```