|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
tags: |
|
- chat |
|
- llama-cpp |
|
- gguf-my-repo |
|
pipeline_tag: text-generation |
|
library_name: transformers |
|
base_model: anthracite-org/magnum-v4-12b |
|
--- |
|
|
|
# Triangle104/magnum-v4-12b-Q5_K_M-GGUF |
|
This model was converted to GGUF format from [`anthracite-org/magnum-v4-12b`](https://huggingface.co/anthracite-org/magnum-v4-12b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. |
|
Refer to the [original model card](https://huggingface.co/anthracite-org/magnum-v4-12b) for more details on the model. |
|
|
|
--- |
|
Model details: |
|
- |
|
This is a series of models designed to replicate the prose quality of the Claude 3 models, specifically Sonnet and Opus. |
|
|
|
This model is fine-tuned on top of mistralai/Mistral-Nemo-Instruct-2407. |
|
Prompting |
|
|
|
A typical input would look like this: |
|
|
|
<s>[INST] SYSTEM MESSAGE |
|
USER MESSAGE[/INST] ASSISTANT MESSAGE</s>[INST] USER MESSAGE[/INST] |
|
|
|
SillyTavern templates |
|
- |
|
Below are Instruct and Context templates for use within SillyTavern. |
|
context template |
|
|
|
default SillyTavern template works fine |
|
|
|
instruct template |
|
- |
|
default SillyTavern template works fine |
|
|
|
Axolotl config |
|
- |
|
See axolotl config |
|
|
|
base_model: mistralai/Mistral-Nemo-Instruct-2407 |
|
model_type: AutoModelForCausalLM |
|
tokenizer_type: AutoTokenizer |
|
|
|
hub_model_id: anthracite-org/magnum-v4-12b-r2 |
|
hub_strategy: "all_checkpoints" |
|
push_dataset_to_hub: |
|
hf_use_auth_token: true |
|
|
|
plugins: |
|
- axolotl.integrations.liger.LigerPlugin |
|
liger_rope: true |
|
liger_rms_norm: true |
|
liger_swiglu: true |
|
liger_fused_linear_cross_entropy: true |
|
|
|
load_in_8bit: false |
|
load_in_4bit: false |
|
strict: false |
|
|
|
datasets: |
|
- path: anthracite-org/c2_logs_32k_llama3_qwen2_v1.2_no_system |
|
type: custommistralv3tekken |
|
- path: anthracite-org/kalo-opus-instruct-22k-no-refusal-no-system |
|
type: custommistralv3tekken |
|
- path: anthracite-org/kalo-opus-instruct-3k-filtered-no-system |
|
type: custommistralv3tekken |
|
- path: anthracite-org/nopm_claude_writing_fixed |
|
type: custommistralv3tekken |
|
- path: anthracite-org/kalo_opus_misc_240827_no_system |
|
type: custommistralv3tekken |
|
- path: anthracite-org/kalo_misc_part2_no_system |
|
type: custommistralv3tekken |
|
#chat_template: chatml |
|
shuffle_merged_datasets: true |
|
#default_system_message: "You are an assistant that responds to the user." |
|
dataset_prepared_path: /workspace/data/magnum-12b-data |
|
val_set_size: 0.0 |
|
output_dir: /workspace/data/12b-fft-out |
|
|
|
sequence_len: 32768 |
|
sample_packing: true |
|
pad_to_sequence_len: true |
|
|
|
adapter: |
|
lora_model_dir: |
|
lora_r: |
|
lora_alpha: |
|
lora_dropout: |
|
lora_target_linear: |
|
lora_fan_in_fan_out: |
|
|
|
wandb_project: 12b-magnum-fft |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: v4-r2-attempt-01 |
|
wandb_log_model: |
|
|
|
gradient_accumulation_steps: 2 |
|
micro_batch_size: 1 |
|
num_epochs: 2 |
|
optimizer: adamw_bnb_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 0.00001 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: auto |
|
fp16: |
|
tf32: false |
|
|
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
warmup_steps: 40 |
|
evals_per_epoch: |
|
eval_table_size: |
|
eval_max_new_tokens: |
|
saves_per_epoch: 2 |
|
debug: |
|
deepspeed: deepspeed_configs/zero2.json |
|
weight_decay: 0.1 |
|
fsdp: |
|
fsdp_config: |
|
special_tokens: |
|
pad_token: <pad> |
|
|
|
Credits |
|
- |
|
We'd like to thank Recursal / Featherless for sponsoring the compute for this train, Featherless has been hosting our Magnum models since the first 72 B and has given thousands of people access to our models and helped us grow. |
|
|
|
We would also like to thank all members of Anthracite who made this finetune possible. |
|
Datasets |
|
|
|
anthracite-org/c2_logs_32k_llama3_qwen2_v1.2_no_system |
|
anthracite-org/kalo-opus-instruct-22k-no-refusal-no-system |
|
anthracite-org/kalo-opus-instruct-3k-filtered-no-system |
|
anthracite-org/nopm_claude_writing_fixed |
|
anthracite-org/kalo_opus_misc_240827_no_system |
|
anthracite-org/kalo_misc_part2_no_system |
|
|
|
Training |
|
- |
|
The training was done for 2 epochs. We used 8xH100s GPUs graciously provided by Recursal AI / Featherless AI for the full-parameter fine-tuning of the model. |
|
|
|
--- |
|
## Use with llama.cpp |
|
Install llama.cpp through brew (works on Mac and Linux) |
|
|
|
```bash |
|
brew install llama.cpp |
|
|
|
``` |
|
Invoke the llama.cpp server or the CLI. |
|
|
|
### CLI: |
|
```bash |
|
llama-cli --hf-repo Triangle104/magnum-v4-12b-Q5_K_M-GGUF --hf-file magnum-v4-12b-q5_k_m.gguf -p "The meaning to life and the universe is" |
|
``` |
|
|
|
### Server: |
|
```bash |
|
llama-server --hf-repo Triangle104/magnum-v4-12b-Q5_K_M-GGUF --hf-file magnum-v4-12b-q5_k_m.gguf -c 2048 |
|
``` |
|
|
|
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. |
|
|
|
Step 1: Clone llama.cpp from GitHub. |
|
``` |
|
git clone https://github.com/ggerganov/llama.cpp |
|
``` |
|
|
|
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). |
|
``` |
|
cd llama.cpp && LLAMA_CURL=1 make |
|
``` |
|
|
|
Step 3: Run inference through the main binary. |
|
``` |
|
./llama-cli --hf-repo Triangle104/magnum-v4-12b-Q5_K_M-GGUF --hf-file magnum-v4-12b-q5_k_m.gguf -p "The meaning to life and the universe is" |
|
``` |
|
or |
|
``` |
|
./llama-server --hf-repo Triangle104/magnum-v4-12b-Q5_K_M-GGUF --hf-file magnum-v4-12b-q5_k_m.gguf -c 2048 |
|
``` |
|
|