--- license: mit base_model: xlnet-large-cased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlnet-large-cased-detect-dep-v3 results: [] --- # xlnet-large-cased-detect-dep-v3 This model is a fine-tuned version of [xlnet-large-cased](https://huggingface.co/xlnet-large-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5734 - Accuracy: 0.745 - F1: 0.8043 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.6578 | 1.0 | 751 | 0.6064 | 0.693 | 0.7902 | | 0.6228 | 2.0 | 1502 | 0.5676 | 0.744 | 0.8142 | | 0.6108 | 3.0 | 2253 | 0.5734 | 0.745 | 0.8043 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3