Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,21 @@
|
|
1 |
---
|
2 |
license: bigscience-bloom-rail-1.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: bigscience-bloom-rail-1.0
|
3 |
---
|
4 |
+
This model is based on [bigscience/bloomz-7b1-mt](https://huggingface.co/bigscience/bloom-7b1). To make it more accessible and efficient for certain Chinese , we have pruned its original vocabulary from 250,880 tokens to 46,145 tokens using Chinese corpus data as follow [bloom-6b4-zh](https://huggingface.co/Langboat/bloom-6b4-zh). This reduction in vocabulary size has helped to significantly reduce the GPU memory usage required to run the model. As a result, the total number of parameters in the model is now 6 billion 4.
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
+
基于 [bigscience/bloomz-7b1-mt](https://huggingface.co/bigscience/bloom-7b1),修建embeddings层到 46145,主要保留中文相关的tokens映射。修建后参数为6B4。
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
# How to use
|
13 |
+
|
14 |
+
```python
|
15 |
+
from transformers import BloomTokenizerFast, BloomForCausalLM
|
16 |
+
|
17 |
+
tokenizer = BloomTokenizerFast.from_pretrained('enze/bloomz-6b4-zh')
|
18 |
+
model = BloomForCausalLM.from_pretrained('enze/bloomz-6b4-zh')
|
19 |
+
|
20 |
+
print(tokenizer.batch_decode(model.generate(tokenizer.encode('中国的首都是', return_tensors='pt'))))
|
21 |
+
```
|