Upload 8 files
Browse files- LLM.txt +35 -0
- README.md +40 -185
- gitattributes +8 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
LLM.txt
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(i)
|
2 |
+
https://community.deeplearning.ai/c/generative-ai-with-large-language-models/gaia-week-1/350
|
3 |
+
|
4 |
+
https://community.deeplearning.ai/t/genai-with-llms-lab-faq/374869
|
5 |
+
|
6 |
+
AWS
|
7 |
+
sagemaker-user@studio$ aws sts get-caller-identity --query "Account" --output text
|
8 |
+
684612602584
|
9 |
+
sagemaker-user@studio$
|
10 |
+
|
11 |
+
https://docs.google.com/forms/d/e/1FAIpQLSfzegoOO0vitgyP4bu1-pf--gnfcSFoX_dGLPTgiciKmkrAnA/viewform
|
12 |
+
|
13 |
+
Video
|
14 |
+
https://synopsys.zoom.us/rec/share/gS0uOubW4xJ5rqnIAvMYIMtZXj2itgSvamshmU5bvPFKlznC9GyM4lpDwFc8XNAz.mDBk_AnE-Jgu7rB7
|
15 |
+
|
16 |
+
https://urldefense.com/v3/__https:/synopsys.zoom.us/rec/share/orOq6IH4vYA3SrCI0z-1NYrdmtUMAjNUdW1OyMQOA-vV4Y7bk8A1Xa1CxIARfq-Z.8VME9CnFDvdhKaEo__;!!A4F2R9G_pg!cwYjaYgjxRMf9ClXBwQcPAVOIWujg5sgQYnP9zh1PEYQc9y9BhE-axUiyFips91XmeJ7s0cciDyhtibhxZuh$
|
17 |
+
|
18 |
+
https://synopsys.zoom.us/rec/play/GToaarqsI5fgNmXTkUrjCp3qBy40u84qT2BmoaY6Q-8njFVmmSYj8gpJMO9vtoKpKGqQl6GrZQ8lIESp._fbgzU4gf1vOcX9A?canPlayFromShare=true&from=share_recording_detail&continueMode=true&componentName=rec-play&originRequestUrl=https%3A%2F%2Fsynopsys.zoom.us%2Frec%2Fshare%2FPVfRewZNYYvcjVgZ3K9-ixuWKXtLfQMafWOpMWPGvrW7BCA1JDrwwydh44C8u85C.-9cLYBBTtvFiN-ie
|
19 |
+
|
20 |
+
[Friday 1:39 PM] Jingfeng Huang
|
21 |
+
git clone https://huggingface.co/google/flan-t5-base
|
22 |
+
google/flan-t5-base · Hugging Face
|
23 |
+
We’re on a journey to advance and democratize artificial intelligence through open source and open science.
|
24 |
+
[Friday 1:40 PM] Jingfeng Huang
|
25 |
+
或者直接在网页里下载到disk也可以。
|
26 |
+
[Friday 1:40 PM] Jingfeng Huang
|
27 |
+
cpu server也可以run起来,慢一点点
|
28 |
+
|
29 |
+
https://github.com/Ryota-Kawamura/Generative-AI-with-LLMs/
|
30 |
+
|
31 |
+
https://huggingface.co/learn/nlp-course/chapter1/3?fw=pt
|
32 |
+
https://colab.research.google.com/github/huggingface/notebooks/blob/master/course/en/chapter1/section3.ipynb?pli=1#scrollTo=7MWCQNutr4kA
|
33 |
+
https://www.kaggle.com/code/dschettler8845/transformers-course-chapter-1-tf-torch
|
34 |
+
|
35 |
+
https://colab.research.google.com/drive/1oPIwPjAjJIHGs_eBgPfkRT6ZTwxYnZKH#scrollTo=6ORFYRzYgG3o
|
README.md
CHANGED
@@ -1,201 +1,56 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
|
8 |
-
|
9 |
|
|
|
10 |
|
|
|
11 |
|
12 |
-
|
|
|
13 |
|
14 |
-
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
|
|
|
201 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
thumbnail: https://github.com/karanchahal/distiller/blob/master/distiller.jpg
|
5 |
+
tags:
|
6 |
+
- question-answering
|
7 |
+
license: apache-2.0
|
8 |
+
datasets:
|
9 |
+
- squad
|
10 |
+
metrics:
|
11 |
+
- squad
|
12 |
---
|
13 |
|
14 |
+
# DistilBERT with a second step of distillation
|
15 |
|
16 |
+
## Model description
|
17 |
|
18 |
+
This model replicates the "DistilBERT (D)" model from Table 2 of the [DistilBERT paper](https://arxiv.org/pdf/1910.01108.pdf). In this approach, a DistilBERT student is fine-tuned on SQuAD v1.1, but with a BERT model (also fine-tuned on SQuAD v1.1) acting as a teacher for a second step of task-specific distillation.
|
19 |
|
20 |
+
In this version, the following pre-trained models were used:
|
21 |
|
22 |
+
* Student: `distilbert-base-uncased`
|
23 |
+
* Teacher: `lewtun/bert-base-uncased-finetuned-squad-v1`
|
24 |
|
25 |
+
## Training data
|
26 |
|
27 |
+
This model was trained on the SQuAD v1.1 dataset which can be obtained from the `datasets` library as follows:
|
28 |
|
29 |
+
```python
|
30 |
+
from datasets import load_dataset
|
31 |
+
squad = load_dataset('squad')
|
32 |
+
```
|
33 |
|
34 |
+
## Training procedure
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
## Eval results
|
37 |
|
38 |
+
| | Exact Match | F1 |
|
39 |
+
|------------------|-------------|------|
|
40 |
+
| DistilBERT paper | 79.1 | 86.9 |
|
41 |
+
| Ours | 78.4 | 86.5 |
|
42 |
|
43 |
+
The scores were calculated using the `squad` metric from `datasets`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
### BibTeX entry and citation info
|
46 |
|
47 |
+
```bibtex
|
48 |
+
@misc{sanh2020distilbert,
|
49 |
+
title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter},
|
50 |
+
author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf},
|
51 |
+
year={2020},
|
52 |
+
eprint={1910.01108},
|
53 |
+
archivePrefix={arXiv},
|
54 |
+
primaryClass={cs.CL}
|
55 |
+
}
|
56 |
+
```
|
gitattributes
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.tar.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:24283a1b9a84d3201c5822c359e58d3562ab74e13cfc6ba5c492df07c82ab121
|
3 |
+
size 265499080
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "name_or_path": "distilbert-base-uncased"}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed6426209b938175459b2894cca548a10e665caf78af631330d1966cc28d6f44
|
3 |
+
size 2095
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|