Turka commited on
Commit
8b4d7ff
1 Parent(s): 58e3b20

Upload 8 files

Browse files
LLM.txt ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ (i)
2
+ https://community.deeplearning.ai/c/generative-ai-with-large-language-models/gaia-week-1/350
3
+
4
+ https://community.deeplearning.ai/t/genai-with-llms-lab-faq/374869
5
+
6
+ AWS
7
+ sagemaker-user@studio$ aws sts get-caller-identity --query "Account" --output text
8
+ 684612602584
9
+ sagemaker-user@studio$
10
+
11
+ https://docs.google.com/forms/d/e/1FAIpQLSfzegoOO0vitgyP4bu1-pf--gnfcSFoX_dGLPTgiciKmkrAnA/viewform
12
+
13
+ Video
14
+ https://synopsys.zoom.us/rec/share/gS0uOubW4xJ5rqnIAvMYIMtZXj2itgSvamshmU5bvPFKlznC9GyM4lpDwFc8XNAz.mDBk_AnE-Jgu7rB7
15
+
16
+ https://urldefense.com/v3/__https:/synopsys.zoom.us/rec/share/orOq6IH4vYA3SrCI0z-1NYrdmtUMAjNUdW1OyMQOA-vV4Y7bk8A1Xa1CxIARfq-Z.8VME9CnFDvdhKaEo__;!!A4F2R9G_pg!cwYjaYgjxRMf9ClXBwQcPAVOIWujg5sgQYnP9zh1PEYQc9y9BhE-axUiyFips91XmeJ7s0cciDyhtibhxZuh$
17
+
18
+ https://synopsys.zoom.us/rec/play/GToaarqsI5fgNmXTkUrjCp3qBy40u84qT2BmoaY6Q-8njFVmmSYj8gpJMO9vtoKpKGqQl6GrZQ8lIESp._fbgzU4gf1vOcX9A?canPlayFromShare=true&from=share_recording_detail&continueMode=true&componentName=rec-play&originRequestUrl=https%3A%2F%2Fsynopsys.zoom.us%2Frec%2Fshare%2FPVfRewZNYYvcjVgZ3K9-ixuWKXtLfQMafWOpMWPGvrW7BCA1JDrwwydh44C8u85C.-9cLYBBTtvFiN-ie
19
+
20
+ [Friday 1:39 PM] Jingfeng Huang
21
+ git clone https://huggingface.co/google/flan-t5-base
22
+ google/flan-t5-base · Hugging Face
23
+ We’re on a journey to advance and democratize artificial intelligence through open source and open science.
24
+ [Friday 1:40 PM] Jingfeng Huang
25
+ 或者直接在网页里下载到disk也可以。
26
+ [Friday 1:40 PM] Jingfeng Huang
27
+ cpu server也可以run起来,慢一点点
28
+
29
+ https://github.com/Ryota-Kawamura/Generative-AI-with-LLMs/
30
+
31
+ https://huggingface.co/learn/nlp-course/chapter1/3?fw=pt
32
+ https://colab.research.google.com/github/huggingface/notebooks/blob/master/course/en/chapter1/section3.ipynb?pli=1#scrollTo=7MWCQNutr4kA
33
+ https://www.kaggle.com/code/dschettler8845/transformers-course-chapter-1-tf-torch
34
+
35
+ https://colab.research.google.com/drive/1oPIwPjAjJIHGs_eBgPfkRT6ZTwxYnZKH#scrollTo=6ORFYRzYgG3o
README.md CHANGED
@@ -1,201 +1,56 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
 
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
 
 
201
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
+ thumbnail: https://github.com/karanchahal/distiller/blob/master/distiller.jpg
5
+ tags:
6
+ - question-answering
7
+ license: apache-2.0
8
+ datasets:
9
+ - squad
10
+ metrics:
11
+ - squad
12
  ---
13
 
14
+ # DistilBERT with a second step of distillation
15
 
16
+ ## Model description
17
 
18
+ This model replicates the "DistilBERT (D)" model from Table 2 of the [DistilBERT paper](https://arxiv.org/pdf/1910.01108.pdf). In this approach, a DistilBERT student is fine-tuned on SQuAD v1.1, but with a BERT model (also fine-tuned on SQuAD v1.1) acting as a teacher for a second step of task-specific distillation.
19
 
20
+ In this version, the following pre-trained models were used:
21
 
22
+ * Student: `distilbert-base-uncased`
23
+ * Teacher: `lewtun/bert-base-uncased-finetuned-squad-v1`
24
 
25
+ ## Training data
26
 
27
+ This model was trained on the SQuAD v1.1 dataset which can be obtained from the `datasets` library as follows:
28
 
29
+ ```python
30
+ from datasets import load_dataset
31
+ squad = load_dataset('squad')
32
+ ```
33
 
34
+ ## Training procedure
 
 
 
 
 
 
35
 
36
+ ## Eval results
37
 
38
+ | | Exact Match | F1 |
39
+ |------------------|-------------|------|
40
+ | DistilBERT paper | 79.1 | 86.9 |
41
+ | Ours | 78.4 | 86.5 |
42
 
43
+ The scores were calculated using the `squad` metric from `datasets`.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
+ ### BibTeX entry and citation info
46
 
47
+ ```bibtex
48
+ @misc{sanh2020distilbert,
49
+ title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter},
50
+ author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf},
51
+ year={2020},
52
+ eprint={1910.01108},
53
+ archivePrefix={arXiv},
54
+ primaryClass={cs.CL}
55
+ }
56
+ ```
gitattributes ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
2
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.h5 filter=lfs diff=lfs merge=lfs -text
5
+ *.tflite filter=lfs diff=lfs merge=lfs -text
6
+ *.tar.gz filter=lfs diff=lfs merge=lfs -text
7
+ *.ot filter=lfs diff=lfs merge=lfs -text
8
+ *.onnx filter=lfs diff=lfs merge=lfs -text
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24283a1b9a84d3201c5822c359e58d3562ab74e13cfc6ba5c492df07c82ab121
3
+ size 265499080
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "name_or_path": "distilbert-base-uncased"}
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed6426209b938175459b2894cca548a10e665caf78af631330d1966cc28d6f44
3
+ size 2095
vocab.txt ADDED
The diff for this file is too large to render. See raw diff