File size: 2,336 Bytes
6eda7be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
# Uncased Finnish Sentence BERT model Finnish Sentence BERT trained from FinBERT ## Training FinBERT model: TurkuNLP/bert-base-finnish-uncased-v1 Data: The data provided [here] (https://turkunlp.org/paraphrase.html), including the Finnish Paraphrase Corpus and the automatically collected paraphrase candidates (500K positive and 5M negative) Pooling: mean pooling Task: Binary prediction, whether two sentences are paraphrases or not. Note: the labels 3 and 4 are considered paraphrases, and labels 1 and 2 non-paraphrases. [Details on labels] (https://aclanthology.org/2021.nodalida-main.29/) ## Usage The same as in [HuggingFace documentation] (https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens). Either through `SentenceTransformer` or `HuggingFace Transformers` ### SentenceTransformer ``` from sentence_transformers import SentenceTransformer sentences = ["Tämä on esimerkkilause.", "Tämä on toinen lause."] model = SentenceTransformer('TurkuNLP/sbert-uncased-finnish-paraphrase') embeddings = model.encode(sentences) print(embeddings) ``` ### HuggingFace Transformers ``` from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ["Tämä on esimerkkilause.", "Tämä on toinen lause."] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('TurkuNLP/sbert-uncased-finnish-paraphrase') model = AutoModel.from_pretrained('TurkuNLP/sbert-uncased-finnish-paraphrase') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` |