Simon Tang commited on
Commit
14d6885
·
1 Parent(s): d59c54f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +95 -0
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - anli
7
+ model-index:
8
+ - name: sft-trl-claim-128
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # sft-trl-claim-128
16
+
17
+ This model is a fine-tuned version of [EleutherAI/gpt-j-6b](https://huggingface.co/EleutherAI/gpt-j-6b) on the anli dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.3201
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 5e-05
39
+ - train_batch_size: 8
40
+ - eval_batch_size: 8
41
+ - seed: 42
42
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
43
+ - lr_scheduler_type: linear
44
+ - lr_scheduler_warmup_steps: 100
45
+ - num_epochs: 3.0
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss |
50
+ |:-------------:|:-----:|:-----:|:---------------:|
51
+ | 1.4364 | 0.08 | 1000 | 1.8760 |
52
+ | 0.9805 | 0.16 | 2000 | 1.2595 |
53
+ | 0.6629 | 0.24 | 3000 | 1.2970 |
54
+ | 0.4647 | 0.32 | 4000 | 0.9789 |
55
+ | 0.4579 | 0.4 | 5000 | 0.8591 |
56
+ | 0.383 | 0.48 | 6000 | 0.8866 |
57
+ | 0.4915 | 0.56 | 7000 | 0.4281 |
58
+ | 0.4139 | 0.64 | 8000 | 0.3946 |
59
+ | 0.2563 | 0.72 | 9000 | 0.3653 |
60
+ | 0.3179 | 0.8 | 10000 | 0.3528 |
61
+ | 0.4199 | 0.88 | 11000 | 0.3602 |
62
+ | 0.3877 | 0.96 | 12000 | 0.3457 |
63
+ | 0.2332 | 1.04 | 13000 | 0.3882 |
64
+ | 0.3817 | 1.11 | 14000 | 0.3604 |
65
+ | 0.2734 | 1.19 | 15000 | 0.3613 |
66
+ | 0.213 | 1.27 | 16000 | 0.3722 |
67
+ | 0.3154 | 1.35 | 17000 | 0.3378 |
68
+ | 0.2258 | 1.43 | 18000 | 0.3117 |
69
+ | 0.3198 | 1.51 | 19000 | 0.3213 |
70
+ | 0.2959 | 1.59 | 20000 | 0.3050 |
71
+ | 0.2588 | 1.67 | 21000 | 0.3190 |
72
+ | 0.2279 | 1.75 | 22000 | 0.3065 |
73
+ | 0.2988 | 1.83 | 23000 | 0.3077 |
74
+ | 0.3701 | 1.91 | 24000 | 0.3092 |
75
+ | 0.281 | 1.99 | 25000 | 0.3038 |
76
+ | 0.1743 | 2.07 | 26000 | 0.3542 |
77
+ | 0.1374 | 2.15 | 27000 | 0.3550 |
78
+ | 0.1282 | 2.23 | 28000 | 0.3386 |
79
+ | 0.1757 | 2.31 | 29000 | 0.3489 |
80
+ | 0.1371 | 2.39 | 30000 | 0.3316 |
81
+ | 0.1689 | 2.47 | 31000 | 0.3291 |
82
+ | 0.1882 | 2.55 | 32000 | 0.3292 |
83
+ | 0.1685 | 2.63 | 33000 | 0.3196 |
84
+ | 0.1775 | 2.71 | 34000 | 0.3320 |
85
+ | 0.1963 | 2.79 | 35000 | 0.3278 |
86
+ | 0.1733 | 2.87 | 36000 | 0.3221 |
87
+ | 0.1503 | 2.95 | 37000 | 0.3201 |
88
+
89
+
90
+ ### Framework versions
91
+
92
+ - Transformers 4.30.2
93
+ - Pytorch 2.0.1+cu117
94
+ - Datasets 2.13.1
95
+ - Tokenizers 0.13.3