Simon Tang
commited on
Commit
•
816a89d
1
Parent(s):
bbed8e6
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- anli
|
7 |
+
model-index:
|
8 |
+
- name: sft-trl
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# sft-trl
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [EleutherAI/gpt-j-6b](https://huggingface.co/EleutherAI/gpt-j-6b) on the anli dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.6837
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 5e-05
|
39 |
+
- train_batch_size: 8
|
40 |
+
- eval_batch_size: 8
|
41 |
+
- seed: 42
|
42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
+
- lr_scheduler_type: linear
|
44 |
+
- lr_scheduler_warmup_steps: 100
|
45 |
+
- num_epochs: 3.0
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
50 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
51 |
+
| 2.1859 | 0.2 | 1000 | 2.0019 |
|
52 |
+
| 1.1342 | 0.4 | 2000 | 1.5352 |
|
53 |
+
| 0.8871 | 0.6 | 3000 | 1.0923 |
|
54 |
+
| 0.591 | 0.8 | 4000 | 0.8373 |
|
55 |
+
| 0.3165 | 1.0 | 5000 | 0.7852 |
|
56 |
+
| 0.3205 | 1.2 | 6000 | 0.7531 |
|
57 |
+
| 0.2338 | 1.4 | 7000 | 0.7155 |
|
58 |
+
| 0.2922 | 1.6 | 8000 | 0.6837 |
|
59 |
+
| 0.2427 | 1.8 | 9000 | 0.6837 |
|
60 |
+
| 0.2036 | 2.0 | 10000 | 0.6837 |
|
61 |
+
| 0.1205 | 2.2 | 11000 | 0.6837 |
|
62 |
+
| 0.2275 | 2.4 | 12000 | 0.6837 |
|
63 |
+
| 0.1094 | 2.6 | 13000 | 0.6837 |
|
64 |
+
| 0.1507 | 2.8 | 14000 | 0.6837 |
|
65 |
+
| 0.1739 | 3.0 | 15000 | 0.6837 |
|
66 |
+
|
67 |
+
|
68 |
+
### Framework versions
|
69 |
+
|
70 |
+
- Transformers 4.30.2
|
71 |
+
- Pytorch 2.0.1+cu117
|
72 |
+
- Datasets 2.13.1
|
73 |
+
- Tokenizers 0.13.3
|