FremyCompany
commited on
Commit
•
646e144
1
Parent(s):
36d92d3
Add custom code
Browse files- modeling_llama_hydra.py +227 -0
modeling_llama_hydra.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import warnings
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
import torch.utils.checkpoint
|
7 |
+
from torch import nn
|
8 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
9 |
+
|
10 |
+
from typing import List, Optional, Tuple, Union
|
11 |
+
|
12 |
+
import transformers
|
13 |
+
from transformers import LlamaConfig
|
14 |
+
from transformers.cache_utils import Cache
|
15 |
+
from transformers.modeling_outputs import (
|
16 |
+
BaseModelOutputWithPast,
|
17 |
+
CausalLMOutputWithPast,
|
18 |
+
QuestionAnsweringModelOutput,
|
19 |
+
SequenceClassifierOutputWithPast,
|
20 |
+
)
|
21 |
+
|
22 |
+
class LlamaHydraConfig(LlamaConfig):
|
23 |
+
model_type = "llama_hydra"
|
24 |
+
|
25 |
+
def __init__(self, **kwargs):
|
26 |
+
if 'vocab_size' not in kwargs:
|
27 |
+
if 'output_vocab_size' in kwargs:
|
28 |
+
kwargs['vocab_size'] = kwargs['output_vocab_size']
|
29 |
+
else:
|
30 |
+
kwargs['vocab_size'] = 32000
|
31 |
+
self.input_vocab_size = kwargs['input_vocab_size'] if 'input_vocab_size' in kwargs else kwargs['vocab_size']
|
32 |
+
self.output_vocab_size = kwargs['output_vocab_size'] if 'output_vocab_size' in kwargs else kwargs['vocab_size']
|
33 |
+
super().__init__(**kwargs)
|
34 |
+
|
35 |
+
class LlamaHydraForCausalLM(transformers.LlamaPreTrainedModel):
|
36 |
+
config_class = LlamaHydraConfig
|
37 |
+
_tied_weights_keys = ["lm_head.weight"]
|
38 |
+
|
39 |
+
def __init__(self, config):
|
40 |
+
hydra_config = LlamaHydraConfig(**config.__dict__)
|
41 |
+
encoder_config = LlamaConfig(**config.__dict__)
|
42 |
+
encoder_config.vocab_size = hydra_config.input_vocab_size
|
43 |
+
super().__init__(hydra_config)
|
44 |
+
self.model = transformers.LlamaModel(encoder_config)
|
45 |
+
self.input_vocab_size = hydra_config.input_vocab_size
|
46 |
+
self.output_vocab_size = hydra_config.output_vocab_size
|
47 |
+
self.vocab_size = hydra_config.vocab_size
|
48 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
49 |
+
|
50 |
+
# Initialize weights and apply final processing
|
51 |
+
self.post_init()
|
52 |
+
|
53 |
+
def get_input_embeddings(self):
|
54 |
+
return self.model.embed_tokens
|
55 |
+
|
56 |
+
def set_input_embeddings(self, value):
|
57 |
+
self.model.embed_tokens = value
|
58 |
+
|
59 |
+
def get_output_embeddings(self):
|
60 |
+
return self.lm_head
|
61 |
+
|
62 |
+
def set_output_embeddings(self, new_embeddings):
|
63 |
+
self.lm_head = new_embeddings
|
64 |
+
|
65 |
+
def set_decoder(self, decoder):
|
66 |
+
self.model = decoder
|
67 |
+
|
68 |
+
def get_decoder(self):
|
69 |
+
return self.model
|
70 |
+
|
71 |
+
#@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
72 |
+
#@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
73 |
+
def forward(
|
74 |
+
self,
|
75 |
+
input_ids: torch.LongTensor = None,
|
76 |
+
attention_mask: Optional[torch.Tensor] = None,
|
77 |
+
position_ids: Optional[torch.LongTensor] = None,
|
78 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
79 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
80 |
+
labels: Optional[torch.LongTensor] = None,
|
81 |
+
use_cache: Optional[bool] = None,
|
82 |
+
output_attentions: Optional[bool] = None,
|
83 |
+
output_hidden_states: Optional[bool] = None,
|
84 |
+
return_dict: Optional[bool] = None,
|
85 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
86 |
+
r"""
|
87 |
+
Args:
|
88 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
89 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
90 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
91 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
92 |
+
|
93 |
+
Returns:
|
94 |
+
|
95 |
+
Example:
|
96 |
+
|
97 |
+
```python
|
98 |
+
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
99 |
+
|
100 |
+
>>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
|
101 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
|
102 |
+
|
103 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
104 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
105 |
+
|
106 |
+
>>> # Generate
|
107 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
108 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
109 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
110 |
+
```"""
|
111 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
112 |
+
output_hidden_states = (
|
113 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
114 |
+
)
|
115 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
116 |
+
|
117 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
118 |
+
outputs = self.model(
|
119 |
+
input_ids=input_ids,
|
120 |
+
attention_mask=attention_mask,
|
121 |
+
position_ids=position_ids,
|
122 |
+
past_key_values=past_key_values,
|
123 |
+
inputs_embeds=inputs_embeds,
|
124 |
+
use_cache=use_cache,
|
125 |
+
output_attentions=output_attentions,
|
126 |
+
output_hidden_states=output_hidden_states,
|
127 |
+
return_dict=return_dict,
|
128 |
+
)
|
129 |
+
|
130 |
+
hidden_states = outputs[0]
|
131 |
+
if self.config.pretraining_tp > 1:
|
132 |
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
133 |
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
134 |
+
logits = torch.cat(logits, dim=-1)
|
135 |
+
else:
|
136 |
+
logits = self.lm_head(hidden_states)
|
137 |
+
logits = logits.float()
|
138 |
+
|
139 |
+
loss = None
|
140 |
+
if labels is not None:
|
141 |
+
# Shift so that tokens < n predict n
|
142 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
143 |
+
shift_labels = labels[..., 1:].contiguous()
|
144 |
+
# Flatten the tokens
|
145 |
+
loss_fct = CrossEntropyLoss()
|
146 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
147 |
+
shift_labels = shift_labels.view(-1)
|
148 |
+
# Enable model parallelism
|
149 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
150 |
+
loss = loss_fct(shift_logits, shift_labels)
|
151 |
+
|
152 |
+
if not return_dict:
|
153 |
+
output = (logits,) + outputs[1:]
|
154 |
+
return (loss,) + output if loss is not None else output
|
155 |
+
|
156 |
+
return CausalLMOutputWithPast(
|
157 |
+
loss=loss,
|
158 |
+
logits=logits,
|
159 |
+
past_key_values=outputs.past_key_values,
|
160 |
+
hidden_states=outputs.hidden_states,
|
161 |
+
attentions=outputs.attentions,
|
162 |
+
)
|
163 |
+
|
164 |
+
def prepare_inputs_for_generation(
|
165 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
166 |
+
):
|
167 |
+
if past_key_values is not None:
|
168 |
+
if isinstance(past_key_values, Cache):
|
169 |
+
cache_length = past_key_values.get_seq_length()
|
170 |
+
past_length = past_key_values.seen_tokens
|
171 |
+
max_cache_length = past_key_values.get_max_length()
|
172 |
+
else:
|
173 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
174 |
+
max_cache_length = None
|
175 |
+
|
176 |
+
# Keep only the unprocessed tokens:
|
177 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
178 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
179 |
+
# input)
|
180 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
181 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
182 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
183 |
+
# input_ids based on the past_length.
|
184 |
+
elif past_length < input_ids.shape[1]:
|
185 |
+
input_ids = input_ids[:, past_length:]
|
186 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
187 |
+
|
188 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
189 |
+
if (
|
190 |
+
max_cache_length is not None
|
191 |
+
and attention_mask is not None
|
192 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
193 |
+
):
|
194 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
195 |
+
|
196 |
+
position_ids = kwargs.get("position_ids", None)
|
197 |
+
if attention_mask is not None and position_ids is None:
|
198 |
+
# create position_ids on the fly for batch generation
|
199 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
200 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
201 |
+
if past_key_values:
|
202 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
203 |
+
|
204 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
205 |
+
if inputs_embeds is not None and past_key_values is None:
|
206 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
207 |
+
else:
|
208 |
+
model_inputs = {"input_ids": input_ids}
|
209 |
+
|
210 |
+
model_inputs.update(
|
211 |
+
{
|
212 |
+
"position_ids": position_ids,
|
213 |
+
"past_key_values": past_key_values,
|
214 |
+
"use_cache": kwargs.get("use_cache"),
|
215 |
+
"attention_mask": attention_mask,
|
216 |
+
}
|
217 |
+
)
|
218 |
+
return model_inputs
|
219 |
+
|
220 |
+
@staticmethod
|
221 |
+
def _reorder_cache(past_key_values, beam_idx):
|
222 |
+
reordered_past = ()
|
223 |
+
for layer_past in past_key_values:
|
224 |
+
reordered_past += (
|
225 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
226 |
+
)
|
227 |
+
return reordered_past
|