File size: 1,791 Bytes
986dbb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce0d461
 
 
 
 
 
986dbb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7742ea2
 
 
ce0d461
986dbb1
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
license: mit
base_model: microsoft/deberta-v3-base
tags:
- generated_from_keras_callback
model-index:
- name: Tylah/test
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# Tylah/test

This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.5126
- Validation Loss: 0.3786
- Train Precision: 1.0
- Train Recall: 0.75
- Train F1: 0.8571
- Epoch: 1

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 55, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Epoch |
|:----------:|:---------------:|:---------------:|:------------:|:--------:|:-----:|
| 0.6636     | 0.5905          | 0.0             | 0.0          | 0.0      | 0     |
| 0.5126     | 0.3786          | 1.0             | 0.75         | 0.8571   | 1     |


### Framework versions

- Transformers 4.31.0
- TensorFlow 2.13.0
- Datasets 2.14.4
- Tokenizers 0.13.3