metaphors commited on
Commit
08f9258
·
verified ·
1 Parent(s): d146025

Upload 7 files

Browse files
config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "../model/tibetan-bert",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "Politics",
14
+ "1": "Economics",
15
+ "2": "Education",
16
+ "3": "Tourism",
17
+ "4": "Environment",
18
+ "5": "Language",
19
+ "6": "Literature",
20
+ "7": "Religion",
21
+ "8": "Arts",
22
+ "9": "Medicine",
23
+ "10": "Customs",
24
+ "11": "Instruments"
25
+ },
26
+ "initializer_range": 0.02,
27
+ "intermediate_size": 3072,
28
+ "label2id": {
29
+ "Arts": 8,
30
+ "Customs": 10,
31
+ "Economics": 1,
32
+ "Education": 2,
33
+ "Environment": 4,
34
+ "Instruments": 11,
35
+ "Language": 5,
36
+ "Literature": 6,
37
+ "Medicine": 9,
38
+ "Politics": 0,
39
+ "Religion": 7,
40
+ "Tourism": 3
41
+ },
42
+ "layer_norm_eps": 1e-12,
43
+ "max_position_embeddings": 512,
44
+ "model_type": "bert",
45
+ "num_attention_heads": 12,
46
+ "num_hidden_layers": 12,
47
+ "pad_token_id": 0,
48
+ "position_embedding_type": "absolute",
49
+ "problem_type": "single_label_classification",
50
+ "torch_dtype": "float32",
51
+ "transformers_version": "4.36.2",
52
+ "type_vocab_size": 2,
53
+ "use_cache": true,
54
+ "vocab_size": 32267
55
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:067ad937a4aafc747cc081c0e95c7fe00364b02ec3b3707b515063e119b4cdf2
3
+ size 443393007
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 1000000000000000019884624838656,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
trainer_state.json ADDED
@@ -0,0 +1,375 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.6611545464384188,
3
+ "best_model_checkpoint": "../saved_model/tibetan-bert_tncc-document_v3/checkpoint-3234",
4
+ "epoch": 20.0,
5
+ "eval_steps": 500,
6
+ "global_step": 4620,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 1.0,
13
+ "eval_accuracy": 0.6271739130434782,
14
+ "eval_loss": 1.15811288356781,
15
+ "eval_macro-f1": 0.5321491435605941,
16
+ "eval_macro-precision": 0.5499509034708364,
17
+ "eval_macro-recall": 0.5513303846525741,
18
+ "eval_runtime": 7.2664,
19
+ "eval_samples_per_second": 126.61,
20
+ "eval_steps_per_second": 3.991,
21
+ "eval_weighted-f1": 0.6286606311348418,
22
+ "eval_weighted-precision": 0.6570526714130747,
23
+ "eval_weighted-recall": 0.6271739130434782,
24
+ "step": 231
25
+ },
26
+ {
27
+ "epoch": 2.0,
28
+ "eval_accuracy": 0.6467391304347826,
29
+ "eval_loss": 1.068244218826294,
30
+ "eval_macro-f1": 0.5647362494157037,
31
+ "eval_macro-precision": 0.6183747770237591,
32
+ "eval_macro-recall": 0.5557985823725112,
33
+ "eval_runtime": 7.286,
34
+ "eval_samples_per_second": 126.269,
35
+ "eval_steps_per_second": 3.98,
36
+ "eval_weighted-f1": 0.6340133102826743,
37
+ "eval_weighted-precision": 0.661646599688849,
38
+ "eval_weighted-recall": 0.6467391304347826,
39
+ "step": 462
40
+ },
41
+ {
42
+ "epoch": 2.16,
43
+ "learning_rate": 4.458874458874459e-05,
44
+ "loss": 1.1735,
45
+ "step": 500
46
+ },
47
+ {
48
+ "epoch": 3.0,
49
+ "eval_accuracy": 0.6760869565217391,
50
+ "eval_loss": 0.9934693574905396,
51
+ "eval_macro-f1": 0.5945571067918397,
52
+ "eval_macro-precision": 0.6219488737703451,
53
+ "eval_macro-recall": 0.5845017075090547,
54
+ "eval_runtime": 7.2737,
55
+ "eval_samples_per_second": 126.483,
56
+ "eval_steps_per_second": 3.987,
57
+ "eval_weighted-f1": 0.6693675078151828,
58
+ "eval_weighted-precision": 0.6716730940106624,
59
+ "eval_weighted-recall": 0.6760869565217391,
60
+ "step": 693
61
+ },
62
+ {
63
+ "epoch": 4.0,
64
+ "eval_accuracy": 0.6760869565217391,
65
+ "eval_loss": 1.0614756345748901,
66
+ "eval_macro-f1": 0.6069076519660962,
67
+ "eval_macro-precision": 0.6513367891333143,
68
+ "eval_macro-recall": 0.5927988194005301,
69
+ "eval_runtime": 7.33,
70
+ "eval_samples_per_second": 125.511,
71
+ "eval_steps_per_second": 3.956,
72
+ "eval_weighted-f1": 0.668192819938365,
73
+ "eval_weighted-precision": 0.6913129775105903,
74
+ "eval_weighted-recall": 0.6760869565217391,
75
+ "step": 924
76
+ },
77
+ {
78
+ "epoch": 4.33,
79
+ "learning_rate": 3.917748917748918e-05,
80
+ "loss": 0.6662,
81
+ "step": 1000
82
+ },
83
+ {
84
+ "epoch": 5.0,
85
+ "eval_accuracy": 0.6608695652173913,
86
+ "eval_loss": 1.1701490879058838,
87
+ "eval_macro-f1": 0.594957375773476,
88
+ "eval_macro-precision": 0.6170952632020997,
89
+ "eval_macro-recall": 0.6011833102671116,
90
+ "eval_runtime": 7.2756,
91
+ "eval_samples_per_second": 126.45,
92
+ "eval_steps_per_second": 3.986,
93
+ "eval_weighted-f1": 0.6654696189795196,
94
+ "eval_weighted-precision": 0.6851333084994409,
95
+ "eval_weighted-recall": 0.6608695652173913,
96
+ "step": 1155
97
+ },
98
+ {
99
+ "epoch": 6.0,
100
+ "eval_accuracy": 0.6510869565217391,
101
+ "eval_loss": 1.292517066001892,
102
+ "eval_macro-f1": 0.607937784808065,
103
+ "eval_macro-precision": 0.630719857369284,
104
+ "eval_macro-recall": 0.6225829586625629,
105
+ "eval_runtime": 7.2833,
106
+ "eval_samples_per_second": 126.317,
107
+ "eval_steps_per_second": 3.982,
108
+ "eval_weighted-f1": 0.6579657588719497,
109
+ "eval_weighted-precision": 0.68649865311892,
110
+ "eval_weighted-recall": 0.6510869565217391,
111
+ "step": 1386
112
+ },
113
+ {
114
+ "epoch": 6.49,
115
+ "learning_rate": 3.376623376623377e-05,
116
+ "loss": 0.3247,
117
+ "step": 1500
118
+ },
119
+ {
120
+ "epoch": 7.0,
121
+ "eval_accuracy": 0.6695652173913044,
122
+ "eval_loss": 1.3797581195831299,
123
+ "eval_macro-f1": 0.6129092280782845,
124
+ "eval_macro-precision": 0.6387021571282967,
125
+ "eval_macro-recall": 0.609094564757661,
126
+ "eval_runtime": 7.2749,
127
+ "eval_samples_per_second": 126.461,
128
+ "eval_steps_per_second": 3.986,
129
+ "eval_weighted-f1": 0.6640159054651581,
130
+ "eval_weighted-precision": 0.6700483998986603,
131
+ "eval_weighted-recall": 0.6695652173913044,
132
+ "step": 1617
133
+ },
134
+ {
135
+ "epoch": 8.0,
136
+ "eval_accuracy": 0.6706521739130434,
137
+ "eval_loss": 1.4838347434997559,
138
+ "eval_macro-f1": 0.6061542359667785,
139
+ "eval_macro-precision": 0.611272244576803,
140
+ "eval_macro-recall": 0.6146650230118652,
141
+ "eval_runtime": 7.2825,
142
+ "eval_samples_per_second": 126.33,
143
+ "eval_steps_per_second": 3.982,
144
+ "eval_weighted-f1": 0.6720993101087696,
145
+ "eval_weighted-precision": 0.6820628069048843,
146
+ "eval_weighted-recall": 0.6706521739130434,
147
+ "step": 1848
148
+ },
149
+ {
150
+ "epoch": 8.66,
151
+ "learning_rate": 2.8354978354978357e-05,
152
+ "loss": 0.1507,
153
+ "step": 2000
154
+ },
155
+ {
156
+ "epoch": 9.0,
157
+ "eval_accuracy": 0.6880434782608695,
158
+ "eval_loss": 1.5808299779891968,
159
+ "eval_macro-f1": 0.6506642163845188,
160
+ "eval_macro-precision": 0.6540683372674448,
161
+ "eval_macro-recall": 0.6603270904104771,
162
+ "eval_runtime": 7.2595,
163
+ "eval_samples_per_second": 126.731,
164
+ "eval_steps_per_second": 3.995,
165
+ "eval_weighted-f1": 0.6915267384661025,
166
+ "eval_weighted-precision": 0.7075992309158492,
167
+ "eval_weighted-recall": 0.6880434782608695,
168
+ "step": 2079
169
+ },
170
+ {
171
+ "epoch": 10.0,
172
+ "eval_accuracy": 0.6717391304347826,
173
+ "eval_loss": 1.650195837020874,
174
+ "eval_macro-f1": 0.6034609083187376,
175
+ "eval_macro-precision": 0.6321546665662738,
176
+ "eval_macro-recall": 0.5917026419660609,
177
+ "eval_runtime": 7.2865,
178
+ "eval_samples_per_second": 126.261,
179
+ "eval_steps_per_second": 3.98,
180
+ "eval_weighted-f1": 0.6684456866047149,
181
+ "eval_weighted-precision": 0.6745276629705688,
182
+ "eval_weighted-recall": 0.6717391304347826,
183
+ "step": 2310
184
+ },
185
+ {
186
+ "epoch": 10.82,
187
+ "learning_rate": 2.2943722943722946e-05,
188
+ "loss": 0.0896,
189
+ "step": 2500
190
+ },
191
+ {
192
+ "epoch": 11.0,
193
+ "eval_accuracy": 0.6804347826086956,
194
+ "eval_loss": 1.738294005393982,
195
+ "eval_macro-f1": 0.6302114432029545,
196
+ "eval_macro-precision": 0.64659326690522,
197
+ "eval_macro-recall": 0.6353590685660309,
198
+ "eval_runtime": 7.3402,
199
+ "eval_samples_per_second": 125.337,
200
+ "eval_steps_per_second": 3.951,
201
+ "eval_weighted-f1": 0.6820100289567567,
202
+ "eval_weighted-precision": 0.6975783236550734,
203
+ "eval_weighted-recall": 0.6804347826086956,
204
+ "step": 2541
205
+ },
206
+ {
207
+ "epoch": 12.0,
208
+ "eval_accuracy": 0.6989130434782609,
209
+ "eval_loss": 1.7147595882415771,
210
+ "eval_macro-f1": 0.6515414811628367,
211
+ "eval_macro-precision": 0.6658442974988088,
212
+ "eval_macro-recall": 0.6496260625897462,
213
+ "eval_runtime": 7.2787,
214
+ "eval_samples_per_second": 126.396,
215
+ "eval_steps_per_second": 3.984,
216
+ "eval_weighted-f1": 0.6976782715450106,
217
+ "eval_weighted-precision": 0.7017023034717548,
218
+ "eval_weighted-recall": 0.6989130434782609,
219
+ "step": 2772
220
+ },
221
+ {
222
+ "epoch": 12.99,
223
+ "learning_rate": 1.7532467532467535e-05,
224
+ "loss": 0.0646,
225
+ "step": 3000
226
+ },
227
+ {
228
+ "epoch": 13.0,
229
+ "eval_accuracy": 0.6891304347826087,
230
+ "eval_loss": 1.7946357727050781,
231
+ "eval_macro-f1": 0.648332711071471,
232
+ "eval_macro-precision": 0.6479765490771864,
233
+ "eval_macro-recall": 0.6515217848664077,
234
+ "eval_runtime": 7.3066,
235
+ "eval_samples_per_second": 125.913,
236
+ "eval_steps_per_second": 3.969,
237
+ "eval_weighted-f1": 0.6915983518325557,
238
+ "eval_weighted-precision": 0.6986485129748002,
239
+ "eval_weighted-recall": 0.6891304347826087,
240
+ "step": 3003
241
+ },
242
+ {
243
+ "epoch": 14.0,
244
+ "eval_accuracy": 0.7,
245
+ "eval_loss": 1.7724699974060059,
246
+ "eval_macro-f1": 0.6611545464384188,
247
+ "eval_macro-precision": 0.667409141168159,
248
+ "eval_macro-recall": 0.6627804433172214,
249
+ "eval_runtime": 7.2494,
250
+ "eval_samples_per_second": 126.906,
251
+ "eval_steps_per_second": 4.0,
252
+ "eval_weighted-f1": 0.7033455944346818,
253
+ "eval_weighted-precision": 0.7140252489602517,
254
+ "eval_weighted-recall": 0.7,
255
+ "step": 3234
256
+ },
257
+ {
258
+ "epoch": 15.0,
259
+ "eval_accuracy": 0.6923913043478261,
260
+ "eval_loss": 1.819846510887146,
261
+ "eval_macro-f1": 0.6556012492821643,
262
+ "eval_macro-precision": 0.6602686382879858,
263
+ "eval_macro-recall": 0.6668664107682606,
264
+ "eval_runtime": 7.2775,
265
+ "eval_samples_per_second": 126.418,
266
+ "eval_steps_per_second": 3.985,
267
+ "eval_weighted-f1": 0.6965952163097968,
268
+ "eval_weighted-precision": 0.7083445248462037,
269
+ "eval_weighted-recall": 0.6923913043478261,
270
+ "step": 3465
271
+ },
272
+ {
273
+ "epoch": 15.15,
274
+ "learning_rate": 1.2121212121212122e-05,
275
+ "loss": 0.042,
276
+ "step": 3500
277
+ },
278
+ {
279
+ "epoch": 16.0,
280
+ "eval_accuracy": 0.6945652173913044,
281
+ "eval_loss": 1.784122109413147,
282
+ "eval_macro-f1": 0.6563585998978742,
283
+ "eval_macro-precision": 0.6655291218706761,
284
+ "eval_macro-recall": 0.6534120619783158,
285
+ "eval_runtime": 7.297,
286
+ "eval_samples_per_second": 126.08,
287
+ "eval_steps_per_second": 3.974,
288
+ "eval_weighted-f1": 0.6949462526633576,
289
+ "eval_weighted-precision": 0.6993999521302994,
290
+ "eval_weighted-recall": 0.6945652173913044,
291
+ "step": 3696
292
+ },
293
+ {
294
+ "epoch": 17.0,
295
+ "eval_accuracy": 0.6945652173913044,
296
+ "eval_loss": 1.7921020984649658,
297
+ "eval_macro-f1": 0.654978142271046,
298
+ "eval_macro-precision": 0.6614421486999998,
299
+ "eval_macro-recall": 0.657140253465508,
300
+ "eval_runtime": 7.359,
301
+ "eval_samples_per_second": 125.018,
302
+ "eval_steps_per_second": 3.941,
303
+ "eval_weighted-f1": 0.6972072799287201,
304
+ "eval_weighted-precision": 0.705999712282921,
305
+ "eval_weighted-recall": 0.6945652173913044,
306
+ "step": 3927
307
+ },
308
+ {
309
+ "epoch": 17.32,
310
+ "learning_rate": 6.709956709956711e-06,
311
+ "loss": 0.0314,
312
+ "step": 4000
313
+ },
314
+ {
315
+ "epoch": 18.0,
316
+ "eval_accuracy": 0.6945652173913044,
317
+ "eval_loss": 1.824020266532898,
318
+ "eval_macro-f1": 0.6548614235086001,
319
+ "eval_macro-precision": 0.6544996322588115,
320
+ "eval_macro-recall": 0.660921203092836,
321
+ "eval_runtime": 7.3304,
322
+ "eval_samples_per_second": 125.504,
323
+ "eval_steps_per_second": 3.956,
324
+ "eval_weighted-f1": 0.6960752624759597,
325
+ "eval_weighted-precision": 0.7018632204313372,
326
+ "eval_weighted-recall": 0.6945652173913044,
327
+ "step": 4158
328
+ },
329
+ {
330
+ "epoch": 19.0,
331
+ "eval_accuracy": 0.6923913043478261,
332
+ "eval_loss": 1.8412573337554932,
333
+ "eval_macro-f1": 0.6506506908222951,
334
+ "eval_macro-precision": 0.6468541951851238,
335
+ "eval_macro-recall": 0.6600299174294355,
336
+ "eval_runtime": 7.2351,
337
+ "eval_samples_per_second": 127.157,
338
+ "eval_steps_per_second": 4.008,
339
+ "eval_weighted-f1": 0.69621624934211,
340
+ "eval_weighted-precision": 0.7054368084525598,
341
+ "eval_weighted-recall": 0.6923913043478261,
342
+ "step": 4389
343
+ },
344
+ {
345
+ "epoch": 19.48,
346
+ "learning_rate": 1.2987012987012988e-06,
347
+ "loss": 0.0233,
348
+ "step": 4500
349
+ },
350
+ {
351
+ "epoch": 20.0,
352
+ "eval_accuracy": 0.691304347826087,
353
+ "eval_loss": 1.8325966596603394,
354
+ "eval_macro-f1": 0.6463398836192601,
355
+ "eval_macro-precision": 0.6403230244612891,
356
+ "eval_macro-recall": 0.6567581821874694,
357
+ "eval_runtime": 7.2741,
358
+ "eval_samples_per_second": 126.476,
359
+ "eval_steps_per_second": 3.987,
360
+ "eval_weighted-f1": 0.6940975925997279,
361
+ "eval_weighted-precision": 0.7008420722361637,
362
+ "eval_weighted-recall": 0.691304347826087,
363
+ "step": 4620
364
+ }
365
+ ],
366
+ "logging_steps": 500,
367
+ "max_steps": 4620,
368
+ "num_input_tokens_seen": 0,
369
+ "num_train_epochs": 20,
370
+ "save_steps": 500,
371
+ "total_flos": 3.87544755290112e+16,
372
+ "train_batch_size": 32,
373
+ "trial_name": null,
374
+ "trial_params": null
375
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d09a8b1217d68c16be078162fca229fc44ec2ee2b8bf5eb7b87dc0918594bfa5
3
+ size 4335
vocab.txt ADDED
The diff for this file is too large to render. See raw diff