metaphors commited on
Commit
5ba3b96
1 Parent(s): 10e9ac7

Upload 7 files

Browse files
config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "../model/tibetan-bert",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "Politics",
14
+ "1": "Economics",
15
+ "2": "Education",
16
+ "3": "Tourism",
17
+ "4": "Environment",
18
+ "5": "Language",
19
+ "6": "Literature",
20
+ "7": "Religion",
21
+ "8": "Arts",
22
+ "9": "Medicine",
23
+ "10": "Customs",
24
+ "11": "Instruments"
25
+ },
26
+ "initializer_range": 0.02,
27
+ "intermediate_size": 3072,
28
+ "label2id": {
29
+ "Arts": 8,
30
+ "Customs": 10,
31
+ "Economics": 1,
32
+ "Education": 2,
33
+ "Environment": 4,
34
+ "Instruments": 11,
35
+ "Language": 5,
36
+ "Literature": 6,
37
+ "Medicine": 9,
38
+ "Politics": 0,
39
+ "Religion": 7,
40
+ "Tourism": 3
41
+ },
42
+ "layer_norm_eps": 1e-12,
43
+ "max_position_embeddings": 512,
44
+ "model_type": "bert",
45
+ "num_attention_heads": 12,
46
+ "num_hidden_layers": 12,
47
+ "pad_token_id": 0,
48
+ "position_embedding_type": "absolute",
49
+ "problem_type": "single_label_classification",
50
+ "torch_dtype": "float32",
51
+ "transformers_version": "4.36.2",
52
+ "type_vocab_size": 2,
53
+ "use_cache": true,
54
+ "vocab_size": 32267
55
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04e476487d8b8d60d2f52616207f8b80a2df4b1e9a2f2b7fe9db4230f499f8bc
3
+ size 443393007
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 1000000000000000019884624838656,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
trainer_state.json ADDED
@@ -0,0 +1,375 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.6057453163676313,
3
+ "best_model_checkpoint": "../saved_model/tibetan-bert_tncc-title_v3/checkpoint-4640",
4
+ "epoch": 20.0,
5
+ "eval_steps": 500,
6
+ "global_step": 4640,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 1.0,
13
+ "eval_accuracy": 0.5717367853290184,
14
+ "eval_loss": 1.3059929609298706,
15
+ "eval_macro-f1": 0.4599932337899495,
16
+ "eval_macro-precision": 0.5198165980322329,
17
+ "eval_macro-recall": 0.47524513594607626,
18
+ "eval_runtime": 7.3569,
19
+ "eval_samples_per_second": 126.004,
20
+ "eval_steps_per_second": 3.942,
21
+ "eval_weighted-f1": 0.5542294574300444,
22
+ "eval_weighted-precision": 0.591566389333376,
23
+ "eval_weighted-recall": 0.5717367853290184,
24
+ "step": 232
25
+ },
26
+ {
27
+ "epoch": 2.0,
28
+ "eval_accuracy": 0.6148867313915858,
29
+ "eval_loss": 1.2135106325149536,
30
+ "eval_macro-f1": 0.5584398853408242,
31
+ "eval_macro-precision": 0.5749611619851209,
32
+ "eval_macro-recall": 0.5695895916407867,
33
+ "eval_runtime": 7.3464,
34
+ "eval_samples_per_second": 126.185,
35
+ "eval_steps_per_second": 3.948,
36
+ "eval_weighted-f1": 0.608666635280638,
37
+ "eval_weighted-precision": 0.6187269920143599,
38
+ "eval_weighted-recall": 0.6148867313915858,
39
+ "step": 464
40
+ },
41
+ {
42
+ "epoch": 2.16,
43
+ "learning_rate": 4.461206896551724e-05,
44
+ "loss": 1.2716,
45
+ "step": 500
46
+ },
47
+ {
48
+ "epoch": 3.0,
49
+ "eval_accuracy": 0.6170442286947141,
50
+ "eval_loss": 1.2330070734024048,
51
+ "eval_macro-f1": 0.5516603706806994,
52
+ "eval_macro-precision": 0.575159910949547,
53
+ "eval_macro-recall": 0.5503575961333385,
54
+ "eval_runtime": 7.2744,
55
+ "eval_samples_per_second": 127.433,
56
+ "eval_steps_per_second": 3.987,
57
+ "eval_weighted-f1": 0.6100508919269417,
58
+ "eval_weighted-precision": 0.6247775875728347,
59
+ "eval_weighted-recall": 0.6170442286947141,
60
+ "step": 696
61
+ },
62
+ {
63
+ "epoch": 4.0,
64
+ "eval_accuracy": 0.6192017259978425,
65
+ "eval_loss": 1.3646526336669922,
66
+ "eval_macro-f1": 0.5686376693802021,
67
+ "eval_macro-precision": 0.5941264267230656,
68
+ "eval_macro-recall": 0.5623900177716177,
69
+ "eval_runtime": 7.3362,
70
+ "eval_samples_per_second": 126.359,
71
+ "eval_steps_per_second": 3.953,
72
+ "eval_weighted-f1": 0.6165925170578278,
73
+ "eval_weighted-precision": 0.6295963103897588,
74
+ "eval_weighted-recall": 0.6192017259978425,
75
+ "step": 928
76
+ },
77
+ {
78
+ "epoch": 4.31,
79
+ "learning_rate": 3.922413793103448e-05,
80
+ "loss": 0.5952,
81
+ "step": 1000
82
+ },
83
+ {
84
+ "epoch": 5.0,
85
+ "eval_accuracy": 0.6256742179072277,
86
+ "eval_loss": 1.435981035232544,
87
+ "eval_macro-f1": 0.5864237155073179,
88
+ "eval_macro-precision": 0.641734562145522,
89
+ "eval_macro-recall": 0.5708896457267656,
90
+ "eval_runtime": 7.3366,
91
+ "eval_samples_per_second": 126.353,
92
+ "eval_steps_per_second": 3.953,
93
+ "eval_weighted-f1": 0.6206257136654274,
94
+ "eval_weighted-precision": 0.6340957047257687,
95
+ "eval_weighted-recall": 0.6256742179072277,
96
+ "step": 1160
97
+ },
98
+ {
99
+ "epoch": 6.0,
100
+ "eval_accuracy": 0.6213592233009708,
101
+ "eval_loss": 1.639809489250183,
102
+ "eval_macro-f1": 0.5665517506857142,
103
+ "eval_macro-precision": 0.579234133027197,
104
+ "eval_macro-recall": 0.5645134686065383,
105
+ "eval_runtime": 7.3778,
106
+ "eval_samples_per_second": 125.647,
107
+ "eval_steps_per_second": 3.931,
108
+ "eval_weighted-f1": 0.61941625450029,
109
+ "eval_weighted-precision": 0.6256700095561613,
110
+ "eval_weighted-recall": 0.6213592233009708,
111
+ "step": 1392
112
+ },
113
+ {
114
+ "epoch": 6.47,
115
+ "learning_rate": 3.383620689655172e-05,
116
+ "loss": 0.259,
117
+ "step": 1500
118
+ },
119
+ {
120
+ "epoch": 7.0,
121
+ "eval_accuracy": 0.6127292340884574,
122
+ "eval_loss": 1.7420923709869385,
123
+ "eval_macro-f1": 0.5600620804632168,
124
+ "eval_macro-precision": 0.580446830474752,
125
+ "eval_macro-recall": 0.5638504244142538,
126
+ "eval_runtime": 7.3417,
127
+ "eval_samples_per_second": 126.265,
128
+ "eval_steps_per_second": 3.95,
129
+ "eval_weighted-f1": 0.609536126843797,
130
+ "eval_weighted-precision": 0.6248423019885316,
131
+ "eval_weighted-recall": 0.6127292340884574,
132
+ "step": 1624
133
+ },
134
+ {
135
+ "epoch": 8.0,
136
+ "eval_accuracy": 0.6138079827400216,
137
+ "eval_loss": 1.8710674047470093,
138
+ "eval_macro-f1": 0.5822983345441143,
139
+ "eval_macro-precision": 0.5948063750427987,
140
+ "eval_macro-recall": 0.5794954217168365,
141
+ "eval_runtime": 7.3262,
142
+ "eval_samples_per_second": 126.532,
143
+ "eval_steps_per_second": 3.958,
144
+ "eval_weighted-f1": 0.6125939186272255,
145
+ "eval_weighted-precision": 0.6180044167574804,
146
+ "eval_weighted-recall": 0.6138079827400216,
147
+ "step": 1856
148
+ },
149
+ {
150
+ "epoch": 8.62,
151
+ "learning_rate": 2.844827586206897e-05,
152
+ "loss": 0.1433,
153
+ "step": 2000
154
+ },
155
+ {
156
+ "epoch": 9.0,
157
+ "eval_accuracy": 0.6084142394822006,
158
+ "eval_loss": 1.9591827392578125,
159
+ "eval_macro-f1": 0.5632816067487086,
160
+ "eval_macro-precision": 0.5909968207291227,
161
+ "eval_macro-recall": 0.5509900757560654,
162
+ "eval_runtime": 7.3577,
163
+ "eval_samples_per_second": 125.991,
164
+ "eval_steps_per_second": 3.941,
165
+ "eval_weighted-f1": 0.6058400058395833,
166
+ "eval_weighted-precision": 0.615382962851156,
167
+ "eval_weighted-recall": 0.6084142394822006,
168
+ "step": 2088
169
+ },
170
+ {
171
+ "epoch": 10.0,
172
+ "eval_accuracy": 0.627831715210356,
173
+ "eval_loss": 1.9844281673431396,
174
+ "eval_macro-f1": 0.5720261323200381,
175
+ "eval_macro-precision": 0.6115468809046185,
176
+ "eval_macro-recall": 0.5521363552960614,
177
+ "eval_runtime": 7.2941,
178
+ "eval_samples_per_second": 127.089,
179
+ "eval_steps_per_second": 3.976,
180
+ "eval_weighted-f1": 0.6186046402157037,
181
+ "eval_weighted-precision": 0.6241715352593074,
182
+ "eval_weighted-recall": 0.627831715210356,
183
+ "step": 2320
184
+ },
185
+ {
186
+ "epoch": 10.78,
187
+ "learning_rate": 2.306034482758621e-05,
188
+ "loss": 0.0918,
189
+ "step": 2500
190
+ },
191
+ {
192
+ "epoch": 11.0,
193
+ "eval_accuracy": 0.622437971952535,
194
+ "eval_loss": 2.121650218963623,
195
+ "eval_macro-f1": 0.575328889968513,
196
+ "eval_macro-precision": 0.6046131450610978,
197
+ "eval_macro-recall": 0.5644507417595815,
198
+ "eval_runtime": 7.3602,
199
+ "eval_samples_per_second": 125.948,
200
+ "eval_steps_per_second": 3.94,
201
+ "eval_weighted-f1": 0.6210201377968305,
202
+ "eval_weighted-precision": 0.6318263677896466,
203
+ "eval_weighted-recall": 0.622437971952535,
204
+ "step": 2552
205
+ },
206
+ {
207
+ "epoch": 12.0,
208
+ "eval_accuracy": 0.6148867313915858,
209
+ "eval_loss": 2.1600427627563477,
210
+ "eval_macro-f1": 0.5634622559142987,
211
+ "eval_macro-precision": 0.5755339049051247,
212
+ "eval_macro-recall": 0.5624852754080202,
213
+ "eval_runtime": 7.3312,
214
+ "eval_samples_per_second": 126.446,
215
+ "eval_steps_per_second": 3.956,
216
+ "eval_weighted-f1": 0.611920153364688,
217
+ "eval_weighted-precision": 0.6153916861013311,
218
+ "eval_weighted-recall": 0.6148867313915858,
219
+ "step": 2784
220
+ },
221
+ {
222
+ "epoch": 12.93,
223
+ "learning_rate": 1.767241379310345e-05,
224
+ "loss": 0.0677,
225
+ "step": 3000
226
+ },
227
+ {
228
+ "epoch": 13.0,
229
+ "eval_accuracy": 0.627831715210356,
230
+ "eval_loss": 2.1390113830566406,
231
+ "eval_macro-f1": 0.5765388673761228,
232
+ "eval_macro-precision": 0.5891444176758638,
233
+ "eval_macro-recall": 0.5793730614376024,
234
+ "eval_runtime": 7.2808,
235
+ "eval_samples_per_second": 127.321,
236
+ "eval_steps_per_second": 3.983,
237
+ "eval_weighted-f1": 0.6268062992828414,
238
+ "eval_weighted-precision": 0.6385775273222236,
239
+ "eval_weighted-recall": 0.627831715210356,
240
+ "step": 3016
241
+ },
242
+ {
243
+ "epoch": 14.0,
244
+ "eval_accuracy": 0.6440129449838188,
245
+ "eval_loss": 2.148944854736328,
246
+ "eval_macro-f1": 0.6041323498671228,
247
+ "eval_macro-precision": 0.6330168044904465,
248
+ "eval_macro-recall": 0.5906969006063283,
249
+ "eval_runtime": 7.3225,
250
+ "eval_samples_per_second": 126.597,
251
+ "eval_steps_per_second": 3.96,
252
+ "eval_weighted-f1": 0.6385550648663262,
253
+ "eval_weighted-precision": 0.645638414060538,
254
+ "eval_weighted-recall": 0.6440129449838188,
255
+ "step": 3248
256
+ },
257
+ {
258
+ "epoch": 15.0,
259
+ "eval_accuracy": 0.6353829557713053,
260
+ "eval_loss": 2.176727056503296,
261
+ "eval_macro-f1": 0.5855092053952029,
262
+ "eval_macro-precision": 0.6205452521876899,
263
+ "eval_macro-recall": 0.5749431187067001,
264
+ "eval_runtime": 7.2634,
265
+ "eval_samples_per_second": 127.627,
266
+ "eval_steps_per_second": 3.993,
267
+ "eval_weighted-f1": 0.6299837224200732,
268
+ "eval_weighted-precision": 0.6440851231945072,
269
+ "eval_weighted-recall": 0.6353829557713053,
270
+ "step": 3480
271
+ },
272
+ {
273
+ "epoch": 15.09,
274
+ "learning_rate": 1.228448275862069e-05,
275
+ "loss": 0.0481,
276
+ "step": 3500
277
+ },
278
+ {
279
+ "epoch": 16.0,
280
+ "eval_accuracy": 0.6343042071197411,
281
+ "eval_loss": 2.2005436420440674,
282
+ "eval_macro-f1": 0.5953777118862926,
283
+ "eval_macro-precision": 0.6279439331751326,
284
+ "eval_macro-recall": 0.5827314498455615,
285
+ "eval_runtime": 7.3585,
286
+ "eval_samples_per_second": 125.977,
287
+ "eval_steps_per_second": 3.941,
288
+ "eval_weighted-f1": 0.6295400705432875,
289
+ "eval_weighted-precision": 0.6407972206921422,
290
+ "eval_weighted-recall": 0.6343042071197411,
291
+ "step": 3712
292
+ },
293
+ {
294
+ "epoch": 17.0,
295
+ "eval_accuracy": 0.6353829557713053,
296
+ "eval_loss": 2.2075998783111572,
297
+ "eval_macro-f1": 0.5922748273767572,
298
+ "eval_macro-precision": 0.6185327701706522,
299
+ "eval_macro-recall": 0.5831902307851583,
300
+ "eval_runtime": 7.315,
301
+ "eval_samples_per_second": 126.726,
302
+ "eval_steps_per_second": 3.964,
303
+ "eval_weighted-f1": 0.6292221063855338,
304
+ "eval_weighted-precision": 0.640744637974118,
305
+ "eval_weighted-recall": 0.6353829557713053,
306
+ "step": 3944
307
+ },
308
+ {
309
+ "epoch": 17.24,
310
+ "learning_rate": 6.896551724137932e-06,
311
+ "loss": 0.0344,
312
+ "step": 4000
313
+ },
314
+ {
315
+ "epoch": 18.0,
316
+ "eval_accuracy": 0.639697950377562,
317
+ "eval_loss": 2.186396598815918,
318
+ "eval_macro-f1": 0.5937344000879472,
319
+ "eval_macro-precision": 0.6082172147504935,
320
+ "eval_macro-recall": 0.586912298660763,
321
+ "eval_runtime": 7.2683,
322
+ "eval_samples_per_second": 127.54,
323
+ "eval_steps_per_second": 3.99,
324
+ "eval_weighted-f1": 0.6356937811215412,
325
+ "eval_weighted-precision": 0.6386402558809051,
326
+ "eval_weighted-recall": 0.639697950377562,
327
+ "step": 4176
328
+ },
329
+ {
330
+ "epoch": 19.0,
331
+ "eval_accuracy": 0.6461704422869471,
332
+ "eval_loss": 2.172349691390991,
333
+ "eval_macro-f1": 0.6048666691904897,
334
+ "eval_macro-precision": 0.6140548549534073,
335
+ "eval_macro-recall": 0.6011637605520835,
336
+ "eval_runtime": 7.3386,
337
+ "eval_samples_per_second": 126.318,
338
+ "eval_steps_per_second": 3.952,
339
+ "eval_weighted-f1": 0.6432377710619339,
340
+ "eval_weighted-precision": 0.6448782718814935,
341
+ "eval_weighted-recall": 0.6461704422869471,
342
+ "step": 4408
343
+ },
344
+ {
345
+ "epoch": 19.4,
346
+ "learning_rate": 1.5086206896551726e-06,
347
+ "loss": 0.0272,
348
+ "step": 4500
349
+ },
350
+ {
351
+ "epoch": 20.0,
352
+ "eval_accuracy": 0.6461704422869471,
353
+ "eval_loss": 2.182253837585449,
354
+ "eval_macro-f1": 0.6057453163676313,
355
+ "eval_macro-precision": 0.6251264122566944,
356
+ "eval_macro-recall": 0.5956135892129149,
357
+ "eval_runtime": 7.2862,
358
+ "eval_samples_per_second": 127.227,
359
+ "eval_steps_per_second": 3.98,
360
+ "eval_weighted-f1": 0.6423371190506697,
361
+ "eval_weighted-precision": 0.645041986434426,
362
+ "eval_weighted-recall": 0.6461704422869471,
363
+ "step": 4640
364
+ }
365
+ ],
366
+ "logging_steps": 500,
367
+ "max_steps": 4640,
368
+ "num_input_tokens_seen": 0,
369
+ "num_train_epochs": 20,
370
+ "save_steps": 500,
371
+ "total_flos": 3.90597117566976e+16,
372
+ "train_batch_size": 32,
373
+ "trial_name": null,
374
+ "trial_params": null
375
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8baded73932b11fa0855701a78474f2c24dbe084ee26a21f4d74720ae6b8d2fe
3
+ size 4335
vocab.txt ADDED
The diff for this file is too large to render. See raw diff