File size: 545 Bytes
7ea2602 01896b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
from huggingface_hub import hf_hub_url, cached_download
import joblib
import pandas as pd
REPO_ID = "julien-c/wine-quality"
FILENAME = "sklearn_model.joblib"
model = joblib.load(cached_download(
hf_hub_url(REPO_ID, FILENAME)
))
# model is a `sklearn.pipeline.Pipeline`
#GET SAMPLE DATA
data_file = cached_download(
hf_hub_url(REPO_ID, "winequality-red.csv")
)
df = pd.read_csv(dataset)
X = df.drop(["Target"], axis=1)
Y = df["Target"]
print(X[:3])
#GET PREDICTIONS
labels = model.predict(X[:3])
#EVALUATE
model.score(X, Y)
|