from huggingface_hub import hf_hub_url, cached_download | |
import joblib | |
import pandas as pd | |
REPO_ID = "julien-c/wine-quality" | |
FILENAME = "sklearn_model.joblib" | |
model = joblib.load(cached_download( | |
hf_hub_url(REPO_ID, FILENAME) | |
)) | |
# model is a `sklearn.pipeline.Pipeline` | |
#GET SAMPLE DATA | |
data_file = cached_download( | |
hf_hub_url(REPO_ID, "winequality-red.csv") | |
) | |
df = pd.read_csv(dataset) | |
X = df.drop(["Target"], axis=1) | |
Y = df["Target"] | |
print(X[:3]) | |
#GET PREDICTIONS | |
labels = model.predict(X[:3]) | |
#EVALUATE | |
model.score(X, Y) | |