--- license: cc-by-nc-4.0 language: - en - de - fr - zh - pt - nl - ru - ko - it - es metrics: - comet pipeline_tag: translation --- # Model Card for Model ID This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description TowerInstruct is a language model that results from fine-tuning TowerBase on the TowerBlocks supervised fine-tuning dataset. TowerInstruct v0.1 is the first model in the series. The model is trained to handle several translation-related tasks, such as general machine translation (e.g., sentence- and document-level translation, terminology-aware translation, context-aware translation), automatic post edition, named-entity recognition, gramatical error correction, and paraphrase generation. We will release more details in the upcoming technical report. - **Developed by:** Unbabel, Instituto Superior Técnico, CentraleSupélec University of Paris-Saclay - **Model type:** A 7B parameter model fine-tuned on a mix of publicly available, synthetic datasets on translation-related tasks, as well as conversational datasets and code instructions. - **Language(s) (NLP):** English, Portuguese, Spanish, French, German, Dutch, Italian, Korean, Chinese, Russian - **License:** CC-BY-NC-4.0 - **Finetuned from model [optional]:** TowerBase ## Intended uses & limitations The model was initially fine-tuned on a filtered and preprocessed supervised fine-tuning dataset (TowerBlocks), which contains a diverse range of data sources: - Translation - Automatic Post Edition - Machine Translation Evaluation - Context-aware Translation - Terminology-aware Translation - Multi-reference Translation - Named-entity Recognition - Paraphrase Generation - Synthetic Chat data - Code instructions You can find the dataset and all data sources of TowerBlocks here. Here's how you can run the model using the `pipeline()` function from 🤗 Transformers: ```python # Install transformers from source - only needed for versions <= v4.34 # pip install git+https://github.com/huggingface/transformers.git # pip install accelerate import torch from transformers import pipeline pipe = pipeline(“text-generation”, model=“Unbabel/TowerInstruct-v0.1“, torch_dtype=torch.bfloat16, device_map=“auto”) # We use the tokenizer’s chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating messages = [ {“role”: “user”, “content”: “Translate the following text from Portuguese into English.\nPortuguese: Um grupo de investigadores lançou um novo modelo para tarefas relacionadas com tradução.\nEnglish:“}, ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=256, do_sample=False) print(outputs[0][“generated_text”]) # <|im_start|>user # Translate the following text from Portuguese into English. # Portuguese: Um grupo de investigadores lançou um novo modelo para tarefas relacionadas com tradução. # English:<|im_end|> # <|im_start|>assistant # A group of researchers has launched a new model for translation-related tasks. ``` ### Out-of-Scope Use The model is not guaranteed to perform for languages other than the 10 languages it supports. Even though we trained the model on conversational data and code instructions, it is not intended to be used as a conversational chatbot or code assistant. ## Bias, Risks, and Limitations TowerInstruct-v0.1 has not been aligned to human preferences, so the model may generate problematic outputs (e.g., hallucinations, harmful content, or false statements). ## Prompt Format TowerInstruct-v0.1 was trained using the ChatML prompt templates without any system prompts. An example follows below: ``` <|im_start|>user {USER PROMPT}<|im_end|> <|im_start|>assistant {MODEL RESPONSE}<|im_end|> <|im_start|>user [...] ``` ### Supervised tasks - Translation ``` Translate the following text from $SRC_LANG into $TGT_LANG. $SRC_LANG: $SRC_TEXT $TGT_LANG: # make sure to add a white space the target placeholder "$TGT_LANG:" for best results ``` - Automatic Post Edition ``` Translate the following text from $SRC_LANG into $TGT_LANG. $SRC_LANG: $SRC_TEXT $TGT_LANG: ``` - Machine Translation Evaluation - Context-aware Translation - Terminology-aware Translation - Multi-reference Translation - Named-entity Recognition - Paraphrase Generation - Synthetic Chat data - Code instructions [More Information Needed] ## Training Details ### Training Data Link to TowerBlocks. ### Training Procedure Write sth about Axolotl. #### Training Hyperparameters The following hyperparameters were used during training: - total_train_batch_size: 256 - learning_rate: 7e-06 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - weight_decay: 0.01 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - num_epochs: 4 - max_seq_length: 2048 ## Citation To be completed. [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)