Translation
File size: 4,064 Bytes
d4918ff
e2f7998
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4918ff
 
e2f7998
 
 
991d16d
 
e2f7998
 
 
 
 
 
 
 
 
 
 
 
 
 
d2d555c
e2f7998
 
 
d2d555c
e2f7998
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82c3832
 
 
e2f7998
 
82c3832
 
 
e2f7998
 
 
82c3832
 
 
 
 
 
 
 
 
 
 
 
e2f7998
 
 
 
 
 
446dac9
 
 
 
e2f7998
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
---
pipeline_tag: translation
language:
  - multilingual
  - af
  - am
  - ar
  - as
  - az
  - be
  - bg
  - bn
  - br
  - bs
  - ca
  - cs
  - cy
  - da
  - de
  - el
  - en
  - eo
  - es
  - et
  - eu
  - fa
  - fi
  - fr
  - fy
  - ga
  - gd
  - gl
  - gu
  - ha
  - he
  - hi
  - hr
  - hu
  - hy
  - id
  - is
  - it
  - ja
  - jv
  - ka
  - kk
  - km
  - kn
  - ko
  - ku
  - ky
  - la
  - lo
  - lt
  - lv
  - mg
  - mk
  - ml
  - mn
  - mr
  - ms
  - my
  - ne
  - nl
  - 'no'
  - om
  - or
  - pa
  - pl
  - ps
  - pt
  - ro
  - ru
  - sa
  - sd
  - si
  - sk
  - sl
  - so
  - sq
  - sr
  - su
  - sv
  - sw
  - ta
  - te
  - th
  - tl
  - tr
  - ug
  - uk
  - ur
  - uz
  - vi
  - xh
  - yi
  - zh

license: apache-2.0
---

This model was developed by the NLP2CT Lab at the University of Macau and Alibaba Group, and all credits should be attributed to these groups. Since it was developed using the COMET codebase, we adapted the code to run these models within COMET."

This is equivalent to [UniTE-MUP-large] from [modelscope](https://www.modelscope.cn/models/damo/nlp_unite_mup_translation_evaluation_multilingual_large/summary)

# Paper

- [UniTE: Unified Translation Evaluation](https://aclanthology.org/2022.acl-long.558/) (Wan et al., ACL 2022)

# Original Code

- [UniTE](https://github.com/NLP2CT/UniTE)

# License

Apache 2.0

# Usage (unbabel-comet)

Using this model requires unbabel-comet (>=2.0.0) to be installed:

```bash
pip install --upgrade pip  # ensures that pip is current 
pip install "unbabel-comet>=2.0.0"
```

Then you can use it through comet CLI:

```bash
comet-score -s {source-inputs}.txt -t {translation-outputs}.txt -r {references}.txt --model Unbabel/unite-mup
```

Or using Python:

```python
from comet import download_model, load_from_checkpoint

model_path = download_model("Unbabel/unite-mup")
model = load_from_checkpoint(model_path)
data = [
    {
        "src": "这是个句子。",
        "mt": "This is a sentence.",
        "ref": "It is a sentence."
    },
    {
        "src": "这是另一个句子。",
        "mt": "This is another sentence.",
        "ref": "It is another sentence."
    }
]
model_output = model.predict(data, batch_size=8, gpus=1)

# Expected SRC score:
# [0.3474583327770233, 0.4492775797843933]
print (model_output.metadata.src_scores)

# Expected REF score:
# [0.9252626895904541, 0.899452269077301]
print (model_output.metadata.ref_scores)

# Expected UNIFIED score:
# [0.8758717179298401, 0.8294666409492493]
print (model_output.metadata.unified_scores)
```

# Intended uses

Our model is intented to be used for **MT evaluation**. 

Given a a triplet with (source sentence, translation, reference translation) outputs three scores that reflect the translation quality according to different inputs: 
- source score: [`mt`, `src`]
- reference score: [`mt`, `ref`]
- unified score: [`mt`, `src`, `ref`]

# Languages Covered:

This model builds on top of XLM-R which cover the following languages:

Afrikaans, Albanian, Amharic, Arabic, Armenian, Assamese, Azerbaijani, Basque, Belarusian, Bengali, Bengali Romanized, Bosnian, Breton, Bulgarian, Burmese, Burmese, Catalan, Chinese (Simplified), Chinese (Traditional), Croatian, Czech, Danish, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Hausa, Hebrew, Hindi, Hindi Romanized, Hungarian, Icelandic, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Macedonian, Malagasy, Malay, Malayalam, Marathi, Mongolian, Nepali, Norwegian, Oriya, Oromo, Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Sanskri, Scottish, Gaelic, Serbian, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tamil, Tamil Romanized, Telugu, Telugu Romanized, Thai, Turkish, Ukrainian, Urdu, Urdu Romanized, Uyghur, Uzbek, Vietnamese, Welsh, Western, Frisian, Xhosa, Yiddish.

Thus, results for language pairs containing uncovered languages are unreliable!