File size: 4,064 Bytes
d4918ff e2f7998 d4918ff e2f7998 991d16d e2f7998 d2d555c e2f7998 d2d555c e2f7998 82c3832 e2f7998 82c3832 e2f7998 82c3832 e2f7998 446dac9 e2f7998 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
---
pipeline_tag: translation
language:
- multilingual
- af
- am
- ar
- as
- az
- be
- bg
- bn
- br
- bs
- ca
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fr
- fy
- ga
- gd
- gl
- gu
- ha
- he
- hi
- hr
- hu
- hy
- id
- is
- it
- ja
- jv
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lo
- lt
- lv
- mg
- mk
- ml
- mn
- mr
- ms
- my
- ne
- nl
- 'no'
- om
- or
- pa
- pl
- ps
- pt
- ro
- ru
- sa
- sd
- si
- sk
- sl
- so
- sq
- sr
- su
- sv
- sw
- ta
- te
- th
- tl
- tr
- ug
- uk
- ur
- uz
- vi
- xh
- yi
- zh
license: apache-2.0
---
This model was developed by the NLP2CT Lab at the University of Macau and Alibaba Group, and all credits should be attributed to these groups. Since it was developed using the COMET codebase, we adapted the code to run these models within COMET."
This is equivalent to [UniTE-MUP-large] from [modelscope](https://www.modelscope.cn/models/damo/nlp_unite_mup_translation_evaluation_multilingual_large/summary)
# Paper
- [UniTE: Unified Translation Evaluation](https://aclanthology.org/2022.acl-long.558/) (Wan et al., ACL 2022)
# Original Code
- [UniTE](https://github.com/NLP2CT/UniTE)
# License
Apache 2.0
# Usage (unbabel-comet)
Using this model requires unbabel-comet (>=2.0.0) to be installed:
```bash
pip install --upgrade pip # ensures that pip is current
pip install "unbabel-comet>=2.0.0"
```
Then you can use it through comet CLI:
```bash
comet-score -s {source-inputs}.txt -t {translation-outputs}.txt -r {references}.txt --model Unbabel/unite-mup
```
Or using Python:
```python
from comet import download_model, load_from_checkpoint
model_path = download_model("Unbabel/unite-mup")
model = load_from_checkpoint(model_path)
data = [
{
"src": "这是个句子。",
"mt": "This is a sentence.",
"ref": "It is a sentence."
},
{
"src": "这是另一个句子。",
"mt": "This is another sentence.",
"ref": "It is another sentence."
}
]
model_output = model.predict(data, batch_size=8, gpus=1)
# Expected SRC score:
# [0.3474583327770233, 0.4492775797843933]
print (model_output.metadata.src_scores)
# Expected REF score:
# [0.9252626895904541, 0.899452269077301]
print (model_output.metadata.ref_scores)
# Expected UNIFIED score:
# [0.8758717179298401, 0.8294666409492493]
print (model_output.metadata.unified_scores)
```
# Intended uses
Our model is intented to be used for **MT evaluation**.
Given a a triplet with (source sentence, translation, reference translation) outputs three scores that reflect the translation quality according to different inputs:
- source score: [`mt`, `src`]
- reference score: [`mt`, `ref`]
- unified score: [`mt`, `src`, `ref`]
# Languages Covered:
This model builds on top of XLM-R which cover the following languages:
Afrikaans, Albanian, Amharic, Arabic, Armenian, Assamese, Azerbaijani, Basque, Belarusian, Bengali, Bengali Romanized, Bosnian, Breton, Bulgarian, Burmese, Burmese, Catalan, Chinese (Simplified), Chinese (Traditional), Croatian, Czech, Danish, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Hausa, Hebrew, Hindi, Hindi Romanized, Hungarian, Icelandic, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Macedonian, Malagasy, Malay, Malayalam, Marathi, Mongolian, Nepali, Norwegian, Oriya, Oromo, Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Sanskri, Scottish, Gaelic, Serbian, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tamil, Tamil Romanized, Telugu, Telugu Romanized, Thai, Turkish, Ukrainian, Urdu, Urdu Romanized, Uyghur, Uzbek, Vietnamese, Welsh, Western, Frisian, Xhosa, Yiddish.
Thus, results for language pairs containing uncovered languages are unreliable!
|