File size: 2,199 Bytes
aa26857
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
library_name: transformers
license: mit
base_model: facebook/m2m100_418M
tags:
- generated_from_trainer
metrics:
- bleu
- meteor
model-index:
- name: M2M101
  results: []
pipeline_tag: translation
datasets:
- sarch7040/Deshika
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# praTran

This model is a fine-tuned version of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on Deshika dataset which is a prallel corpus of Prakrit with their corresponding English Translations
It achieves the following results on the evaluation set:
- Loss: 1.3269
- Bleu: 8.4241
- Meteor: 0.3851
- Gen Len: 30.7356

## Model Description

praTran is a finetuned version of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) which was trained on a downstream task. 

## Intended uses

This model is intended to use for academic purposes.

## Limitation
The models translation is not that good at this current stage to the language being extremely low resource. Impro

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Bleu   | Meteor | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:-------:|
| No log        | 1.0   | 74   | 4.9214          | 2.8147 | 0.2385 | 31.7864 |
| No log        | 2.0   | 148  | 3.1788          | 5.0267 | 0.3144 | 29.7695 |
| No log        | 3.0   | 222  | 2.0374          | 6.4844 | 0.3399 | 30.2237 |
| No log        | 4.0   | 296  | 1.4798          | 7.4708 | 0.3768 | 31.3932 |
| No log        | 5.0   | 370  | 1.3269          | 8.4241 | 0.3851 | 30.7356 |


### Framework versions

- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0