Teja-Gollapudi commited on
Commit
fff4f61
1 Parent(s): 3124762

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc
3
+ datasets:
4
+ - VMware/open-instruct-v1-oasst-dolly-hhrlhf
5
+ language:
6
+ - en
7
+ library_name: transformers
8
+ pipeline_tag: text-generation
9
+ ---
10
+
11
+ # VMware/open-llama-13B-open-instruct
12
+ Instruction-tuned version of the fully trained Open LLama 13B model. The model is open for <b>COMMERCIAL USE</b>. <br>
13
+
14
+ <b> NOTE </b> : The model was trained using the Alpaca prompt template
15
+ <b> NOTE </b> : Fast tokenizer results in incorrect encoding, set the ```use_fast = False``` parameter, when instantiating the tokenizer
16
+ <b> NOTE </b> : The model might struggle with code as the tokenizer merges multiple spaces
17
+
18
+ ## License
19
+ - <b>Commercially Viable </b>
20
+ - Instruction dataset, [VMware/open-instruct-v1-oasst-dolly-hhrlhf](https://huggingface.co/datasets/VMware/open-instruct-v1-oasst-dolly-hhrlhf) is under cc-by-sa-3.0
21
+ - Language Model, ([openlm-research/open_llama_13b](https://huggingface.co/openlm-research/open_llama_13b)) is under apache-2.0
22
+
23
+
24
+ ## Nomenclature
25
+
26
+ - Model : Open-llama
27
+ - Model Size: 13B parameters
28
+ - Dataset: Open-instruct-v1 (oasst,dolly, hhrlhf)
29
+
30
+ ## Use in Transformers
31
+
32
+ ```
33
+ import os
34
+ import torch
35
+ from transformers import AutoModelForCausalLM, AutoTokenizer
36
+
37
+ model_name = 'VMware/open-llama-13b-open-instruct'
38
+
39
+
40
+ tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
41
+
42
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map='sequential')
43
+
44
+ prompt_template = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:"
45
+
46
+ prompt = 'Explain in simple terms how the attention mechanism of a transformer model works'
47
+
48
+
49
+ inputt = prompt_template.format(instruction= prompt)
50
+ input_ids = tokenizer(inputt, return_tensors="pt").input_ids.to("cuda")
51
+
52
+ output1 = model.generate(input_ids, max_length=512)
53
+ input_length = input_ids.shape[1]
54
+ output1 = output1[:, input_length:]
55
+ output = tokenizer.decode(output1[0])
56
+
57
+ print(output)
58
+ ```
59
+
60
+ ## Finetuning details
61
+ The finetuning scripts will be available in our [RAIL Github Repository](https://github.com/vmware-labs/research-and-development-artificial-intelligence-lab/tree/main/instruction-tuning)
62
+ ## Evaluation
63
+
64
+ <B>TODO</B>