Teja-Gollapudi commited on
Commit
38621ba
1 Parent(s): 778d9ed

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -0
README.md ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc
3
+ datasets:
4
+ - VMware/open-instruct-v1-oasst-dolly-hhrlhf
5
+ language:
6
+ - en
7
+ library_name: transformers
8
+ pipeline_tag: text-generation
9
+ ---
10
+
11
+ # VMware/open-llama-7B-open-instruct
12
+ Instruction-tuned version of SalesForce/Xgen-7b-8k-base. The model is open for <b>COMMERCIAL USE</b>. <br>
13
+
14
+ We expanded Open-instruct with additional commercially viable zero-shot COT datasets from Flan v2 (~70k). (TODO: List out the datasets) <br>
15
+
16
+ The model supports up to <b>8192 tokens </b>
17
+
18
+ <b> NOTE </b> : The model was trained using the Alpaca prompt template
19
+
20
+
21
+ ## License
22
+ - <b>Commercially Viable </b>
23
+ - The instruction datasets used for instruction tuning are open for commercial usage. (TODO LIST OUT THE DATASETS)
24
+ - Language Model, ([Salesforce/xgen-7b-8k-base](https://huggingface.co/Salesforce/xgen-7b-8k-base)) is under apache-2.0
25
+
26
+
27
+
28
+ ## Use in Transformers
29
+
30
+ ```
31
+ import os
32
+ import torch
33
+ from transformers import AutoModelForCausalLM, AutoTokenizer
34
+
35
+ model_name = 'VMware/xgen-7b-8k-open-instruct'
36
+
37
+
38
+ tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False, trust_remote_code = True)
39
+
40
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map='sequential')
41
+
42
+ prompt_template = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:"
43
+
44
+ prompt = 'Explain in simple terms how the attention mechanism of a transformer model works'
45
+
46
+
47
+ inputt = prompt_template.format(instruction= prompt)
48
+ input_ids = tokenizer(inputt, return_tensors="pt").input_ids.to("cuda")
49
+
50
+ output1 = model.generate(input_ids, max_length=8192)
51
+ input_length = input_ids.shape[1]
52
+ output1 = output1[:, input_length:]
53
+ output = tokenizer.decode(output1[0])
54
+
55
+ print(output)
56
+
57
+ ```
58
+
59
+ ## Finetuning details
60
+ The finetuning scripts will be available in our [RAIL Github Repository](https://github.com/vmware-labs/research-and-development-artificial-intelligence-lab/tree/main/instruction-tuning)
61
+ ## Evaluation
62
+
63
+ <B>TODO</B>