ValentinaKim commited on
Commit
60c8205
1 Parent(s): 1373812

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,659 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: intfloat/multilingual-e5-small
3
+ language:
4
+ - multilingual
5
+ library_name: sentence-transformers
6
+ license: apache-2.0
7
+ metrics:
8
+ - cosine_accuracy@1
9
+ - cosine_accuracy@3
10
+ - cosine_accuracy@5
11
+ - cosine_accuracy@10
12
+ - cosine_precision@1
13
+ - cosine_precision@3
14
+ - cosine_precision@5
15
+ - cosine_precision@10
16
+ - cosine_recall@1
17
+ - cosine_recall@3
18
+ - cosine_recall@5
19
+ - cosine_recall@10
20
+ - cosine_ndcg@10
21
+ - cosine_mrr@10
22
+ - cosine_map@100
23
+ pipeline_tag: sentence-similarity
24
+ tags:
25
+ - sentence-transformers
26
+ - sentence-similarity
27
+ - feature-extraction
28
+ - generated_from_trainer
29
+ - dataset_size:2320
30
+ - loss:MatryoshkaLoss
31
+ - loss:MultipleNegativesRankingLoss
32
+ widget:
33
+ - source_sentence: 'MVGO; medium vacuum
34
+
35
+ gas oil'
36
+ sentences:
37
+ - 과분해
38
+ - Medium Vacuum Gas Oil(MVGO) ;
39
+ - '선적 전 또는 양하 후에 화물창에 잔존하는 소량의 액체화물 양을 결정하는 수학
40
+
41
+ 적인 계산 수식'
42
+ - source_sentence: PLE; plain large end
43
+ sentences:
44
+ - Plain Large End ;
45
+ - '부하중 변압기 Tap 변환기 ;
46
+
47
+ 변압기 권선의 Tap을 무정전으로 변경하는 장치'
48
+ - Cone Roof Tank에서 Tank내의 Vapor가 외부로 나갈 수 있도록 만들어 놓은 구멍
49
+ - source_sentence: Fluidization
50
+ sentences:
51
+ - '핵심성과지표;
52
+
53
+ 어떤 계획이나 목표가 성공하였는지 또는 성공하고 있는지를 확인하려면 그 성공
54
+
55
+ 을 구성하는 요소들을 측정하는 지표를 찾아 측정하여야 하는데, 이들 지표 중 성
56
+
57
+ 공을 확인할 수 있는 가장 결정적인 지표를 KPI라고 부릅니다.'
58
+ - '전압변동에 영향을 주는 무효전력을 줄이기 위한 조상설비의 일종으로 정지형 무
59
+
60
+ 효전력 보상장치'
61
+ - 고체층을 액체나 기체로 확대시키거나 현탁시켜 유통하도록 하는 것
62
+ - source_sentence: 'SH; surface hardened
63
+
64
+ steel body'
65
+ sentences:
66
+ - Surface Hardened Steel Body ;
67
+ - 분산제 ; 슬러지 생성을 방지하기 위하여 Oil에 넣어주는 약품
68
+ - '작업위험성평가;
69
+
70
+ 현장에서 수행되는 작업을 포함한 전반적인 직무 활동에 대하여 위험요인을 분석
71
+
72
+ 하여 현재 안전조치를 검토하고 안전대책을 마련하는 기법'
73
+ - source_sentence: U-205200
74
+ sentences:
75
+ - 물속의 (-)ion을 OH-로 치환해 주는 이온교환수지탑
76
+ - 차단기, 스위치류 , 스위치
77
+ - 올레핀 송유/동력 Nitrogen Section
78
+ model-index:
79
+ - name: Multilingual base soil embedding model (quantized)
80
+ results:
81
+ - task:
82
+ type: information-retrieval
83
+ name: Information Retrieval
84
+ dataset:
85
+ name: dim 256
86
+ type: dim_256
87
+ metrics:
88
+ - type: cosine_accuracy@1
89
+ value: 0.2441860465116279
90
+ name: Cosine Accuracy@1
91
+ - type: cosine_accuracy@3
92
+ value: 0.31007751937984496
93
+ name: Cosine Accuracy@3
94
+ - type: cosine_accuracy@5
95
+ value: 0.3643410852713178
96
+ name: Cosine Accuracy@5
97
+ - type: cosine_accuracy@10
98
+ value: 0.4108527131782946
99
+ name: Cosine Accuracy@10
100
+ - type: cosine_precision@1
101
+ value: 0.2441860465116279
102
+ name: Cosine Precision@1
103
+ - type: cosine_precision@3
104
+ value: 0.10335917312661498
105
+ name: Cosine Precision@3
106
+ - type: cosine_precision@5
107
+ value: 0.07286821705426358
108
+ name: Cosine Precision@5
109
+ - type: cosine_precision@10
110
+ value: 0.041085271317829464
111
+ name: Cosine Precision@10
112
+ - type: cosine_recall@1
113
+ value: 0.2441860465116279
114
+ name: Cosine Recall@1
115
+ - type: cosine_recall@3
116
+ value: 0.31007751937984496
117
+ name: Cosine Recall@3
118
+ - type: cosine_recall@5
119
+ value: 0.3643410852713178
120
+ name: Cosine Recall@5
121
+ - type: cosine_recall@10
122
+ value: 0.4108527131782946
123
+ name: Cosine Recall@10
124
+ - type: cosine_ndcg@10
125
+ value: 0.3172493867293268
126
+ name: Cosine Ndcg@10
127
+ - type: cosine_mrr@10
128
+ value: 0.28840746893072483
129
+ name: Cosine Mrr@10
130
+ - type: cosine_map@100
131
+ value: 0.3003133446683658
132
+ name: Cosine Map@100
133
+ - task:
134
+ type: information-retrieval
135
+ name: Information Retrieval
136
+ dataset:
137
+ name: dim 128
138
+ type: dim_128
139
+ metrics:
140
+ - type: cosine_accuracy@1
141
+ value: 0.2054263565891473
142
+ name: Cosine Accuracy@1
143
+ - type: cosine_accuracy@3
144
+ value: 0.28294573643410853
145
+ name: Cosine Accuracy@3
146
+ - type: cosine_accuracy@5
147
+ value: 0.3178294573643411
148
+ name: Cosine Accuracy@5
149
+ - type: cosine_accuracy@10
150
+ value: 0.38372093023255816
151
+ name: Cosine Accuracy@10
152
+ - type: cosine_precision@1
153
+ value: 0.2054263565891473
154
+ name: Cosine Precision@1
155
+ - type: cosine_precision@3
156
+ value: 0.09431524547803617
157
+ name: Cosine Precision@3
158
+ - type: cosine_precision@5
159
+ value: 0.06356589147286822
160
+ name: Cosine Precision@5
161
+ - type: cosine_precision@10
162
+ value: 0.03837209302325582
163
+ name: Cosine Precision@10
164
+ - type: cosine_recall@1
165
+ value: 0.2054263565891473
166
+ name: Cosine Recall@1
167
+ - type: cosine_recall@3
168
+ value: 0.28294573643410853
169
+ name: Cosine Recall@3
170
+ - type: cosine_recall@5
171
+ value: 0.3178294573643411
172
+ name: Cosine Recall@5
173
+ - type: cosine_recall@10
174
+ value: 0.38372093023255816
175
+ name: Cosine Recall@10
176
+ - type: cosine_ndcg@10
177
+ value: 0.2850988708112555
178
+ name: Cosine Ndcg@10
179
+ - type: cosine_mrr@10
180
+ value: 0.25465270087363123
181
+ name: Cosine Mrr@10
182
+ - type: cosine_map@100
183
+ value: 0.26532412971784447
184
+ name: Cosine Map@100
185
+ - task:
186
+ type: information-retrieval
187
+ name: Information Retrieval
188
+ dataset:
189
+ name: dim 64
190
+ type: dim_64
191
+ metrics:
192
+ - type: cosine_accuracy@1
193
+ value: 0.1937984496124031
194
+ name: Cosine Accuracy@1
195
+ - type: cosine_accuracy@3
196
+ value: 0.2713178294573643
197
+ name: Cosine Accuracy@3
198
+ - type: cosine_accuracy@5
199
+ value: 0.29844961240310075
200
+ name: Cosine Accuracy@5
201
+ - type: cosine_accuracy@10
202
+ value: 0.3488372093023256
203
+ name: Cosine Accuracy@10
204
+ - type: cosine_precision@1
205
+ value: 0.1937984496124031
206
+ name: Cosine Precision@1
207
+ - type: cosine_precision@3
208
+ value: 0.0904392764857881
209
+ name: Cosine Precision@3
210
+ - type: cosine_precision@5
211
+ value: 0.059689922480620154
212
+ name: Cosine Precision@5
213
+ - type: cosine_precision@10
214
+ value: 0.03488372093023256
215
+ name: Cosine Precision@10
216
+ - type: cosine_recall@1
217
+ value: 0.1937984496124031
218
+ name: Cosine Recall@1
219
+ - type: cosine_recall@3
220
+ value: 0.2713178294573643
221
+ name: Cosine Recall@3
222
+ - type: cosine_recall@5
223
+ value: 0.29844961240310075
224
+ name: Cosine Recall@5
225
+ - type: cosine_recall@10
226
+ value: 0.3488372093023256
227
+ name: Cosine Recall@10
228
+ - type: cosine_ndcg@10
229
+ value: 0.26467320016495083
230
+ name: Cosine Ndcg@10
231
+ - type: cosine_mrr@10
232
+ value: 0.2385474344776671
233
+ name: Cosine Mrr@10
234
+ - type: cosine_map@100
235
+ value: 0.2482312240959752
236
+ name: Cosine Map@100
237
+ ---
238
+
239
+ # Multilingual base soil embedding model (quantized)
240
+
241
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
242
+
243
+ ## Model Details
244
+
245
+ ### Model Description
246
+ - **Model Type:** Sentence Transformer
247
+ - **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) <!-- at revision fd1525a9fd15316a2d503bf26ab031a61d056e98 -->
248
+ - **Maximum Sequence Length:** 512 tokens
249
+ - **Output Dimensionality:** 384 tokens
250
+ - **Similarity Function:** Cosine Similarity
251
+ <!-- - **Training Dataset:** Unknown -->
252
+ - **Language:** multilingual
253
+ - **License:** apache-2.0
254
+
255
+ ### Model Sources
256
+
257
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
258
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
259
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
260
+
261
+ ### Full Model Architecture
262
+
263
+ ```
264
+ SentenceTransformer(
265
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
266
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
267
+ (2): Normalize()
268
+ )
269
+ ```
270
+
271
+ ## Usage
272
+
273
+ ### Direct Usage (Sentence Transformers)
274
+
275
+ First install the Sentence Transformers library:
276
+
277
+ ```bash
278
+ pip install -U sentence-transformers
279
+ ```
280
+
281
+ Then you can load this model and run inference.
282
+ ```python
283
+ from sentence_transformers import SentenceTransformer
284
+
285
+ # Download from the 🤗 Hub
286
+ model = SentenceTransformer("ValentinaKim/Multilingual-base-soil-embedding")
287
+ # Run inference
288
+ sentences = [
289
+ 'U-205200',
290
+ '올레핀 송유/동력 Nitrogen Section',
291
+ '차단기, 스위치류 , 스위치',
292
+ ]
293
+ embeddings = model.encode(sentences)
294
+ print(embeddings.shape)
295
+ # [3, 384]
296
+
297
+ # Get the similarity scores for the embeddings
298
+ similarities = model.similarity(embeddings, embeddings)
299
+ print(similarities.shape)
300
+ # [3, 3]
301
+ ```
302
+
303
+ <!--
304
+ ### Direct Usage (Transformers)
305
+
306
+ <details><summary>Click to see the direct usage in Transformers</summary>
307
+
308
+ </details>
309
+ -->
310
+
311
+ <!--
312
+ ### Downstream Usage (Sentence Transformers)
313
+
314
+ You can finetune this model on your own dataset.
315
+
316
+ <details><summary>Click to expand</summary>
317
+
318
+ </details>
319
+ -->
320
+
321
+ <!--
322
+ ### Out-of-Scope Use
323
+
324
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
325
+ -->
326
+
327
+ ## Evaluation
328
+
329
+ ### Metrics
330
+
331
+ #### Information Retrieval
332
+ * Dataset: `dim_256`
333
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
334
+
335
+ | Metric | Value |
336
+ |:--------------------|:-----------|
337
+ | cosine_accuracy@1 | 0.2442 |
338
+ | cosine_accuracy@3 | 0.3101 |
339
+ | cosine_accuracy@5 | 0.3643 |
340
+ | cosine_accuracy@10 | 0.4109 |
341
+ | cosine_precision@1 | 0.2442 |
342
+ | cosine_precision@3 | 0.1034 |
343
+ | cosine_precision@5 | 0.0729 |
344
+ | cosine_precision@10 | 0.0411 |
345
+ | cosine_recall@1 | 0.2442 |
346
+ | cosine_recall@3 | 0.3101 |
347
+ | cosine_recall@5 | 0.3643 |
348
+ | cosine_recall@10 | 0.4109 |
349
+ | cosine_ndcg@10 | 0.3172 |
350
+ | cosine_mrr@10 | 0.2884 |
351
+ | **cosine_map@100** | **0.3003** |
352
+
353
+ #### Information Retrieval
354
+ * Dataset: `dim_128`
355
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
356
+
357
+ | Metric | Value |
358
+ |:--------------------|:-----------|
359
+ | cosine_accuracy@1 | 0.2054 |
360
+ | cosine_accuracy@3 | 0.2829 |
361
+ | cosine_accuracy@5 | 0.3178 |
362
+ | cosine_accuracy@10 | 0.3837 |
363
+ | cosine_precision@1 | 0.2054 |
364
+ | cosine_precision@3 | 0.0943 |
365
+ | cosine_precision@5 | 0.0636 |
366
+ | cosine_precision@10 | 0.0384 |
367
+ | cosine_recall@1 | 0.2054 |
368
+ | cosine_recall@3 | 0.2829 |
369
+ | cosine_recall@5 | 0.3178 |
370
+ | cosine_recall@10 | 0.3837 |
371
+ | cosine_ndcg@10 | 0.2851 |
372
+ | cosine_mrr@10 | 0.2547 |
373
+ | **cosine_map@100** | **0.2653** |
374
+
375
+ #### Information Retrieval
376
+ * Dataset: `dim_64`
377
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
378
+
379
+ | Metric | Value |
380
+ |:--------------------|:-----------|
381
+ | cosine_accuracy@1 | 0.1938 |
382
+ | cosine_accuracy@3 | 0.2713 |
383
+ | cosine_accuracy@5 | 0.2984 |
384
+ | cosine_accuracy@10 | 0.3488 |
385
+ | cosine_precision@1 | 0.1938 |
386
+ | cosine_precision@3 | 0.0904 |
387
+ | cosine_precision@5 | 0.0597 |
388
+ | cosine_precision@10 | 0.0349 |
389
+ | cosine_recall@1 | 0.1938 |
390
+ | cosine_recall@3 | 0.2713 |
391
+ | cosine_recall@5 | 0.2984 |
392
+ | cosine_recall@10 | 0.3488 |
393
+ | cosine_ndcg@10 | 0.2647 |
394
+ | cosine_mrr@10 | 0.2385 |
395
+ | **cosine_map@100** | **0.2482** |
396
+
397
+ <!--
398
+ ## Bias, Risks and Limitations
399
+
400
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
401
+ -->
402
+
403
+ <!--
404
+ ### Recommendations
405
+
406
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
407
+ -->
408
+
409
+ ## Training Details
410
+
411
+ ### Training Dataset
412
+
413
+ #### Unnamed Dataset
414
+
415
+
416
+ * Size: 2,320 training samples
417
+ * Columns: <code>anchor</code> and <code>positive</code>
418
+ * Approximate statistics based on the first 1000 samples:
419
+ | | anchor | positive |
420
+ |:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
421
+ | type | string | string |
422
+ | details | <ul><li>min: 3 tokens</li><li>mean: 6.72 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 35.77 tokens</li><li>max: 408 tokens</li></ul> |
423
+ * Samples:
424
+ | anchor | positive |
425
+ |:--------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------|
426
+ | <code>Deionizer</code> | <code>탈이온장치 ; Demineralizer와 동일</code> |
427
+ | <code>Sub-CC; sub-contracting<br>committee</code> | <code>외주 계약의 투명성과 공정성을 확보하기 위한 Sub-계약위원회로서 위원 및 위원<br>장은 CEO가 임명한다. CC이원원 부문장 이상 임원으로 하고 간사는 구매관리팀<br>장이 한다.</code> |
428
+ | <code>In-line Sampler</code> | <code>원유 속의 물과 침전물의 함량을 측정하기 위하여 원유하역 Line에 설치해 놓은<br>시료채취기</code> |
429
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
430
+ ```json
431
+ {
432
+ "loss": "MultipleNegativesRankingLoss",
433
+ "matryoshka_dims": [
434
+ 256,
435
+ 128,
436
+ 64
437
+ ],
438
+ "matryoshka_weights": [
439
+ 1,
440
+ 1,
441
+ 1
442
+ ],
443
+ "n_dims_per_step": -1
444
+ }
445
+ ```
446
+
447
+ ### Training Hyperparameters
448
+ #### Non-Default Hyperparameters
449
+
450
+ - `eval_strategy`: epoch
451
+ - `per_device_train_batch_size`: 32
452
+ - `per_device_eval_batch_size`: 16
453
+ - `gradient_accumulation_steps`: 16
454
+ - `learning_rate`: 2e-05
455
+ - `num_train_epochs`: 10
456
+ - `lr_scheduler_type`: cosine
457
+ - `warmup_ratio`: 0.1
458
+ - `tf32`: False
459
+ - `optim`: adamw_torch_fused
460
+ - `batch_sampler`: no_duplicates
461
+
462
+ #### All Hyperparameters
463
+ <details><summary>Click to expand</summary>
464
+
465
+ - `overwrite_output_dir`: False
466
+ - `do_predict`: False
467
+ - `eval_strategy`: epoch
468
+ - `prediction_loss_only`: True
469
+ - `per_device_train_batch_size`: 32
470
+ - `per_device_eval_batch_size`: 16
471
+ - `per_gpu_train_batch_size`: None
472
+ - `per_gpu_eval_batch_size`: None
473
+ - `gradient_accumulation_steps`: 16
474
+ - `eval_accumulation_steps`: None
475
+ - `learning_rate`: 2e-05
476
+ - `weight_decay`: 0.0
477
+ - `adam_beta1`: 0.9
478
+ - `adam_beta2`: 0.999
479
+ - `adam_epsilon`: 1e-08
480
+ - `max_grad_norm`: 1.0
481
+ - `num_train_epochs`: 10
482
+ - `max_steps`: -1
483
+ - `lr_scheduler_type`: cosine
484
+ - `lr_scheduler_kwargs`: {}
485
+ - `warmup_ratio`: 0.1
486
+ - `warmup_steps`: 0
487
+ - `log_level`: passive
488
+ - `log_level_replica`: warning
489
+ - `log_on_each_node`: True
490
+ - `logging_nan_inf_filter`: True
491
+ - `save_safetensors`: True
492
+ - `save_on_each_node`: False
493
+ - `save_only_model`: False
494
+ - `restore_callback_states_from_checkpoint`: False
495
+ - `no_cuda`: False
496
+ - `use_cpu`: False
497
+ - `use_mps_device`: False
498
+ - `seed`: 42
499
+ - `data_seed`: None
500
+ - `jit_mode_eval`: False
501
+ - `use_ipex`: False
502
+ - `bf16`: False
503
+ - `fp16`: False
504
+ - `fp16_opt_level`: O1
505
+ - `half_precision_backend`: auto
506
+ - `bf16_full_eval`: False
507
+ - `fp16_full_eval`: False
508
+ - `tf32`: False
509
+ - `local_rank`: 0
510
+ - `ddp_backend`: None
511
+ - `tpu_num_cores`: None
512
+ - `tpu_metrics_debug`: False
513
+ - `debug`: []
514
+ - `dataloader_drop_last`: False
515
+ - `dataloader_num_workers`: 0
516
+ - `dataloader_prefetch_factor`: None
517
+ - `past_index`: -1
518
+ - `disable_tqdm`: False
519
+ - `remove_unused_columns`: True
520
+ - `label_names`: None
521
+ - `load_best_model_at_end`: False
522
+ - `ignore_data_skip`: False
523
+ - `fsdp`: []
524
+ - `fsdp_min_num_params`: 0
525
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
526
+ - `fsdp_transformer_layer_cls_to_wrap`: None
527
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
528
+ - `deepspeed`: None
529
+ - `label_smoothing_factor`: 0.0
530
+ - `optim`: adamw_torch_fused
531
+ - `optim_args`: None
532
+ - `adafactor`: False
533
+ - `group_by_length`: False
534
+ - `length_column_name`: length
535
+ - `ddp_find_unused_parameters`: None
536
+ - `ddp_bucket_cap_mb`: None
537
+ - `ddp_broadcast_buffers`: False
538
+ - `dataloader_pin_memory`: True
539
+ - `dataloader_persistent_workers`: False
540
+ - `skip_memory_metrics`: True
541
+ - `use_legacy_prediction_loop`: False
542
+ - `push_to_hub`: False
543
+ - `resume_from_checkpoint`: None
544
+ - `hub_model_id`: None
545
+ - `hub_strategy`: every_save
546
+ - `hub_private_repo`: False
547
+ - `hub_always_push`: False
548
+ - `gradient_checkpointing`: False
549
+ - `gradient_checkpointing_kwargs`: None
550
+ - `include_inputs_for_metrics`: False
551
+ - `eval_do_concat_batches`: True
552
+ - `fp16_backend`: auto
553
+ - `push_to_hub_model_id`: None
554
+ - `push_to_hub_organization`: None
555
+ - `mp_parameters`:
556
+ - `auto_find_batch_size`: False
557
+ - `full_determinism`: False
558
+ - `torchdynamo`: None
559
+ - `ray_scope`: last
560
+ - `ddp_timeout`: 1800
561
+ - `torch_compile`: False
562
+ - `torch_compile_backend`: None
563
+ - `torch_compile_mode`: None
564
+ - `dispatch_batches`: None
565
+ - `split_batches`: None
566
+ - `include_tokens_per_second`: False
567
+ - `include_num_input_tokens_seen`: False
568
+ - `neftune_noise_alpha`: None
569
+ - `optim_target_modules`: None
570
+ - `batch_eval_metrics`: False
571
+ - `batch_sampler`: no_duplicates
572
+ - `multi_dataset_batch_sampler`: proportional
573
+
574
+ </details>
575
+
576
+ ### Training Logs
577
+ | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_64_cosine_map@100 |
578
+ |:------:|:----:|:-------------:|:----------------------:|:----------------------:|:---------------------:|
579
+ | 0.8767 | 4 | - | 0.2156 | 0.2448 | 0.1831 |
580
+ | 1.9726 | 9 | - | 0.2511 | 0.2765 | 0.2154 |
581
+ | 2.1918 | 10 | 7.6309 | - | - | - |
582
+ | 2.8493 | 13 | - | 0.2531 | 0.2852 | 0.2345 |
583
+ | 3.9452 | 18 | - | 0.2617 | 0.2914 | 0.2353 |
584
+ | 4.3836 | 20 | 5.3042 | - | - | - |
585
+ | 4.8219 | 22 | - | 0.2626 | 0.2946 | 0.2422 |
586
+ | 5.9178 | 27 | - | 0.2629 | 0.2987 | 0.2481 |
587
+ | 6.5753 | 30 | 4.2433 | - | - | - |
588
+ | 6.7945 | 31 | - | 0.2684 | 0.2988 | 0.2495 |
589
+ | 7.8904 | 36 | - | 0.2652 | 0.3003 | 0.2488 |
590
+ | 8.7671 | 40 | 3.9117 | 0.2653 | 0.3003 | 0.2482 |
591
+
592
+
593
+ ### Framework Versions
594
+ - Python: 3.10.12
595
+ - Sentence Transformers: 3.1.1
596
+ - Transformers: 4.41.2
597
+ - PyTorch: 2.1.2+cu121
598
+ - Accelerate: 1.0.0
599
+ - Datasets: 2.19.1
600
+ - Tokenizers: 0.19.1
601
+
602
+ ## Citation
603
+
604
+ ### BibTeX
605
+
606
+ #### Sentence Transformers
607
+ ```bibtex
608
+ @inproceedings{reimers-2019-sentence-bert,
609
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
610
+ author = "Reimers, Nils and Gurevych, Iryna",
611
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
612
+ month = "11",
613
+ year = "2019",
614
+ publisher = "Association for Computational Linguistics",
615
+ url = "https://arxiv.org/abs/1908.10084",
616
+ }
617
+ ```
618
+
619
+ #### MatryoshkaLoss
620
+ ```bibtex
621
+ @misc{kusupati2024matryoshka,
622
+ title={Matryoshka Representation Learning},
623
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
624
+ year={2024},
625
+ eprint={2205.13147},
626
+ archivePrefix={arXiv},
627
+ primaryClass={cs.LG}
628
+ }
629
+ ```
630
+
631
+ #### MultipleNegativesRankingLoss
632
+ ```bibtex
633
+ @misc{henderson2017efficient,
634
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
635
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
636
+ year={2017},
637
+ eprint={1705.00652},
638
+ archivePrefix={arXiv},
639
+ primaryClass={cs.CL}
640
+ }
641
+ ```
642
+
643
+ <!--
644
+ ## Glossary
645
+
646
+ *Clearly define terms in order to be accessible across audiences.*
647
+ -->
648
+
649
+ <!--
650
+ ## Model Card Authors
651
+
652
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
653
+ -->
654
+
655
+ <!--
656
+ ## Model Card Contact
657
+
658
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
659
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "intfloat/multilingual-e5-small",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "tokenizer_class": "XLMRobertaTokenizer",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8fefd3648885dbef088f6d9e5c87d488742493440adabea90311199a5a13ffef
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef04f2b385d1514f500e779207ace0f53e30895ce37563179e29f4022d28ca38
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 512,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }