---
base_model: intfloat/multilingual-e5-small
language:
- multilingual
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2320
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: 'MVGO; medium vacuum
gas oil'
sentences:
- 과분해
- Medium Vacuum Gas Oil(MVGO) ;
- '선적 전 또는 양하 후에 화물창에 잔존하는 소량의 액체화물 양을 결정하는 수학
적인 계산 수식'
- source_sentence: PLE; plain large end
sentences:
- Plain Large End ;
- '부하중 변압기 Tap 변환기 ;
변압기 권선의 Tap을 무정전으로 변경하는 장치'
- Cone Roof Tank에서 Tank내의 Vapor가 외부로 나갈 수 있도록 만들어 놓은 구멍
- source_sentence: Fluidization
sentences:
- '핵심성과지표;
어떤 계획이나 목표가 성공하였는지 또는 성공하고 있는지를 확인하려면 그 성공
을 구성하는 요소들을 측정하는 지표를 찾아 측정하여야 하는데, 이들 지표 중 성
공을 확인할 수 있는 가장 결정적인 지표를 KPI라고 부릅니다.'
- '전압변동에 영향을 주는 무효전력을 줄이기 위한 조상설비의 일종으로 정지형 무
효전력 보상장치'
- 고체층을 액체나 기체로 확대시키거나 현탁시켜 유통하도록 하는 것
- source_sentence: 'SH; surface hardened
steel body'
sentences:
- Surface Hardened Steel Body ;
- 분산제 ; 슬러지 생성을 방지하기 위하여 Oil에 넣어주는 약품
- '작업위험성평가;
현장에서 수행되는 작업을 포함한 전반적인 직무 활동에 대하여 위험요인을 분석
하여 현재 안전조치를 검토하고 안전대책을 마련하는 기법'
- source_sentence: U-205200
sentences:
- 물속의 (-)ion을 OH-로 치환해 주는 이온교환수지탑
- 차단기, 스위치류 , 스위치
- 올레핀 송유/동력 Nitrogen Section
model-index:
- name: Multilingual base soil embedding model (quantized)
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.2441860465116279
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.31007751937984496
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.3643410852713178
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.4108527131782946
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.2441860465116279
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.10335917312661498
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.07286821705426358
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.041085271317829464
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.2441860465116279
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.31007751937984496
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3643410852713178
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.4108527131782946
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.3172493867293268
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.28840746893072483
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3003133446683658
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.2054263565891473
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.28294573643410853
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.3178294573643411
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.38372093023255816
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.2054263565891473
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.09431524547803617
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.06356589147286822
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.03837209302325582
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.2054263565891473
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.28294573643410853
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3178294573643411
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.38372093023255816
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2850988708112555
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.25465270087363123
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.26532412971784447
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.1937984496124031
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.2713178294573643
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.29844961240310075
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.3488372093023256
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.1937984496124031
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.0904392764857881
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.059689922480620154
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.03488372093023256
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.1937984496124031
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.2713178294573643
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.29844961240310075
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.3488372093023256
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.26467320016495083
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.2385474344776671
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2482312240959752
name: Cosine Map@100
---
# Multilingual base soil embedding model (quantized)
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
- **Language:** multilingual
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ValentinaKim/Multilingual-base-soil-embedding")
# Run inference
sentences = [
'U-205200',
'올레핀 송유/동력 Nitrogen Section',
'차단기, 스위치류 , 스위치',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.2442 |
| cosine_accuracy@3 | 0.3101 |
| cosine_accuracy@5 | 0.3643 |
| cosine_accuracy@10 | 0.4109 |
| cosine_precision@1 | 0.2442 |
| cosine_precision@3 | 0.1034 |
| cosine_precision@5 | 0.0729 |
| cosine_precision@10 | 0.0411 |
| cosine_recall@1 | 0.2442 |
| cosine_recall@3 | 0.3101 |
| cosine_recall@5 | 0.3643 |
| cosine_recall@10 | 0.4109 |
| cosine_ndcg@10 | 0.3172 |
| cosine_mrr@10 | 0.2884 |
| **cosine_map@100** | **0.3003** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.2054 |
| cosine_accuracy@3 | 0.2829 |
| cosine_accuracy@5 | 0.3178 |
| cosine_accuracy@10 | 0.3837 |
| cosine_precision@1 | 0.2054 |
| cosine_precision@3 | 0.0943 |
| cosine_precision@5 | 0.0636 |
| cosine_precision@10 | 0.0384 |
| cosine_recall@1 | 0.2054 |
| cosine_recall@3 | 0.2829 |
| cosine_recall@5 | 0.3178 |
| cosine_recall@10 | 0.3837 |
| cosine_ndcg@10 | 0.2851 |
| cosine_mrr@10 | 0.2547 |
| **cosine_map@100** | **0.2653** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.1938 |
| cosine_accuracy@3 | 0.2713 |
| cosine_accuracy@5 | 0.2984 |
| cosine_accuracy@10 | 0.3488 |
| cosine_precision@1 | 0.1938 |
| cosine_precision@3 | 0.0904 |
| cosine_precision@5 | 0.0597 |
| cosine_precision@10 | 0.0349 |
| cosine_recall@1 | 0.1938 |
| cosine_recall@3 | 0.2713 |
| cosine_recall@5 | 0.2984 |
| cosine_recall@10 | 0.3488 |
| cosine_ndcg@10 | 0.2647 |
| cosine_mrr@10 | 0.2385 |
| **cosine_map@100** | **0.2482** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 2,320 training samples
* Columns: anchor
and positive
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string |
| details |
Deionizer
| 탈이온장치 ; Demineralizer와 동일
|
| Sub-CC; sub-contracting
committee
| 외주 계약의 투명성과 공정성을 확보하기 위한 Sub-계약위원회로서 위원 및 위원
장은 CEO가 임명한다. CC이원원 부문장 이상 임원으로 하고 간사는 구매관리팀
장이 한다.
|
| In-line Sampler
| 원유 속의 물과 침전물의 함량을 측정하기 위하여 원유하역 Line에 설치해 놓은
시료채취기
|
* Loss: [MatryoshkaLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 10
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `tf32`: False
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters