ValentinaKim commited on
Commit
512349c
1 Parent(s): 0979f39

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,789 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: intfloat/e5-base
3
+ datasets: []
4
+ language:
5
+ - en
6
+ library_name: sentence-transformers
7
+ license: apache-2.0
8
+ metrics:
9
+ - cosine_accuracy@1
10
+ - cosine_accuracy@3
11
+ - cosine_accuracy@5
12
+ - cosine_accuracy@10
13
+ - cosine_precision@1
14
+ - cosine_precision@3
15
+ - cosine_precision@5
16
+ - cosine_precision@10
17
+ - cosine_recall@1
18
+ - cosine_recall@3
19
+ - cosine_recall@5
20
+ - cosine_recall@10
21
+ - cosine_ndcg@10
22
+ - cosine_mrr@10
23
+ - cosine_map@100
24
+ pipeline_tag: sentence-similarity
25
+ tags:
26
+ - sentence-transformers
27
+ - sentence-similarity
28
+ - feature-extraction
29
+ - generated_from_trainer
30
+ - dataset_size:63
31
+ - loss:MatryoshkaLoss
32
+ - loss:MultipleNegativesRankingLoss
33
+ widget:
34
+ - source_sentence: 하이브리드 자동차의 스마트 크루즈 컨트롤 기능은 운전자가 설정한 속도를 유지하는 기능입니다. 이 기능에서는 전방
35
+ 카메라와 레이더 센서를 사용하여 도로의 제한 속도를 감지하고, 이를 기반으로 속도를 조절합니다.
36
+ sentences:
37
+ - 하이테크센터나 블루핸즈에서 점검을 받을 때는 어떤 경우에 해당합니까?
38
+ - 원터치 자동 유리창의 작동 원리를 설명하세요.
39
+ - 하이브리드 자동차의 스마트 크루즈 컨트롤 기능을 설명하세요.
40
+ - source_sentence: 하이브리드 자동차의 지능형 속도 제한 보조의 제한 사항은 표지판이 오염 또는 훼손되거나 불명확할 경우, 주변 물체에
41
+ 표지판 일부가 가려지거나 그림자가 표지판을 덮을 경우, 표지판 형상 또는 설치 방법이 표준과 다를 경우 등입니다.
42
+ sentences:
43
+ - 테마 모드를 설정하려면 어떻게 해야 하나요?
44
+ - 에어백 경고 라벨의 주의 사항은 무엇입니까?
45
+ - 하이브리드 자동차의 지능형 속도 제한 보조의 제한 사항은 무엇입니까?
46
+ - source_sentence: 어린이 탑승 시에는 차에서 내릴 때 어린이를 차 안에 남겨두지 마십시오. 어린이가 차내 안전 장비를 잘못 만져 사고가
47
+ 발생할 수 있고, 여름이나 겨울에는 차 내부 온도가 너무 높거나 낮아져 매우 위험합니다.
48
+ sentences:
49
+ - 운전자 주의 경고의 기본 기능은 무엇입니까?
50
+ - 하이브리드 자동차의 고전압 배터리 시스템에 대한 안전 주의 사항은 무엇입니까?
51
+ - 어린이 탑승 시 주의 사항을 설명하세요.
52
+ - source_sentence: 후방 주차 충돌방지 보조의 이상 및 제한 사항은 다음과 같습니다. 기능 이상, 인식 센서 가림, 광각-후방 카메라,
53
+ 후방 초음파센서의 이상 등이 있습니다. 이러한 이상 및 제한 사항에 따라 후방 주차 충돌방지 보조의 성능이 저하되거나 오작동 할 수 있습니다.
54
+ sentences:
55
+ - 하이브리드 자동차의 회생 제동 모드를 설명하세요.
56
+ - 하이빔 보조 설정 방법은 무엇입니까?
57
+ - 후방 주차 충돌방지 보조의 이상 및 제한 사항을 설명하세요.
58
+ - source_sentence: 클러스터 조명 밝기 조절은 시동 'ON' 상태에서 인포테인먼트 시스템의 설정> 클러스터/HUD > 화면 밝기를 차례로
59
+ 선택하면 클러스터의 밝기를 조절할 수 있습니다. 인포테인먼트 시스템 화면에 표시되는 조명밝기 조절 정도를 참고하여 원하는 밝기로 조절하십시오.
60
+ sentences:
61
+ - 운전자 주의 경고 시스템의 작동 원리를 설명하세요.
62
+ - 클러스터 조명 밝기 조절은 어떻게 하나요?
63
+ - 하이브리드 자동차의 저압 타이어 경고등이 켜졌을 때의 조치는 무엇입니까?
64
+ model-index:
65
+ - name: BGE base Financial Matryoshka
66
+ results:
67
+ - task:
68
+ type: information-retrieval
69
+ name: Information Retrieval
70
+ dataset:
71
+ name: dim 768
72
+ type: dim_768
73
+ metrics:
74
+ - type: cosine_accuracy@1
75
+ value: 0.5555555555555556
76
+ name: Cosine Accuracy@1
77
+ - type: cosine_accuracy@3
78
+ value: 0.8148148148148148
79
+ name: Cosine Accuracy@3
80
+ - type: cosine_accuracy@5
81
+ value: 0.8518518518518519
82
+ name: Cosine Accuracy@5
83
+ - type: cosine_accuracy@10
84
+ value: 0.9259259259259259
85
+ name: Cosine Accuracy@10
86
+ - type: cosine_precision@1
87
+ value: 0.5555555555555556
88
+ name: Cosine Precision@1
89
+ - type: cosine_precision@3
90
+ value: 0.27160493827160487
91
+ name: Cosine Precision@3
92
+ - type: cosine_precision@5
93
+ value: 0.1703703703703704
94
+ name: Cosine Precision@5
95
+ - type: cosine_precision@10
96
+ value: 0.09259259259259262
97
+ name: Cosine Precision@10
98
+ - type: cosine_recall@1
99
+ value: 0.5555555555555556
100
+ name: Cosine Recall@1
101
+ - type: cosine_recall@3
102
+ value: 0.8148148148148148
103
+ name: Cosine Recall@3
104
+ - type: cosine_recall@5
105
+ value: 0.8518518518518519
106
+ name: Cosine Recall@5
107
+ - type: cosine_recall@10
108
+ value: 0.9259259259259259
109
+ name: Cosine Recall@10
110
+ - type: cosine_ndcg@10
111
+ value: 0.7435849530374239
112
+ name: Cosine Ndcg@10
113
+ - type: cosine_mrr@10
114
+ value: 0.6849206349206348
115
+ name: Cosine Mrr@10
116
+ - type: cosine_map@100
117
+ value: 0.6889906389906391
118
+ name: Cosine Map@100
119
+ - task:
120
+ type: information-retrieval
121
+ name: Information Retrieval
122
+ dataset:
123
+ name: dim 512
124
+ type: dim_512
125
+ metrics:
126
+ - type: cosine_accuracy@1
127
+ value: 0.5555555555555556
128
+ name: Cosine Accuracy@1
129
+ - type: cosine_accuracy@3
130
+ value: 0.7777777777777778
131
+ name: Cosine Accuracy@3
132
+ - type: cosine_accuracy@5
133
+ value: 0.8518518518518519
134
+ name: Cosine Accuracy@5
135
+ - type: cosine_accuracy@10
136
+ value: 0.8888888888888888
137
+ name: Cosine Accuracy@10
138
+ - type: cosine_precision@1
139
+ value: 0.5555555555555556
140
+ name: Cosine Precision@1
141
+ - type: cosine_precision@3
142
+ value: 0.25925925925925924
143
+ name: Cosine Precision@3
144
+ - type: cosine_precision@5
145
+ value: 0.1703703703703704
146
+ name: Cosine Precision@5
147
+ - type: cosine_precision@10
148
+ value: 0.0888888888888889
149
+ name: Cosine Precision@10
150
+ - type: cosine_recall@1
151
+ value: 0.5555555555555556
152
+ name: Cosine Recall@1
153
+ - type: cosine_recall@3
154
+ value: 0.7777777777777778
155
+ name: Cosine Recall@3
156
+ - type: cosine_recall@5
157
+ value: 0.8518518518518519
158
+ name: Cosine Recall@5
159
+ - type: cosine_recall@10
160
+ value: 0.8888888888888888
161
+ name: Cosine Recall@10
162
+ - type: cosine_ndcg@10
163
+ value: 0.7335374617221688
164
+ name: Cosine Ndcg@10
165
+ - type: cosine_mrr@10
166
+ value: 0.6824514991181657
167
+ name: Cosine Mrr@10
168
+ - type: cosine_map@100
169
+ value: 0.6896593804001211
170
+ name: Cosine Map@100
171
+ - task:
172
+ type: information-retrieval
173
+ name: Information Retrieval
174
+ dataset:
175
+ name: dim 256
176
+ type: dim_256
177
+ metrics:
178
+ - type: cosine_accuracy@1
179
+ value: 0.5925925925925926
180
+ name: Cosine Accuracy@1
181
+ - type: cosine_accuracy@3
182
+ value: 0.7777777777777778
183
+ name: Cosine Accuracy@3
184
+ - type: cosine_accuracy@5
185
+ value: 0.8148148148148148
186
+ name: Cosine Accuracy@5
187
+ - type: cosine_accuracy@10
188
+ value: 0.8888888888888888
189
+ name: Cosine Accuracy@10
190
+ - type: cosine_precision@1
191
+ value: 0.5925925925925926
192
+ name: Cosine Precision@1
193
+ - type: cosine_precision@3
194
+ value: 0.25925925925925924
195
+ name: Cosine Precision@3
196
+ - type: cosine_precision@5
197
+ value: 0.16296296296296298
198
+ name: Cosine Precision@5
199
+ - type: cosine_precision@10
200
+ value: 0.0888888888888889
201
+ name: Cosine Precision@10
202
+ - type: cosine_recall@1
203
+ value: 0.5925925925925926
204
+ name: Cosine Recall@1
205
+ - type: cosine_recall@3
206
+ value: 0.7777777777777778
207
+ name: Cosine Recall@3
208
+ - type: cosine_recall@5
209
+ value: 0.8148148148148148
210
+ name: Cosine Recall@5
211
+ - type: cosine_recall@10
212
+ value: 0.8888888888888888
213
+ name: Cosine Recall@10
214
+ - type: cosine_ndcg@10
215
+ value: 0.7460717071407622
216
+ name: Cosine Ndcg@10
217
+ - type: cosine_mrr@10
218
+ value: 0.6997354497354498
219
+ name: Cosine Mrr@10
220
+ - type: cosine_map@100
221
+ value: 0.7073543740210406
222
+ name: Cosine Map@100
223
+ - task:
224
+ type: information-retrieval
225
+ name: Information Retrieval
226
+ dataset:
227
+ name: dim 128
228
+ type: dim_128
229
+ metrics:
230
+ - type: cosine_accuracy@1
231
+ value: 0.5925925925925926
232
+ name: Cosine Accuracy@1
233
+ - type: cosine_accuracy@3
234
+ value: 0.7407407407407407
235
+ name: Cosine Accuracy@3
236
+ - type: cosine_accuracy@5
237
+ value: 0.8518518518518519
238
+ name: Cosine Accuracy@5
239
+ - type: cosine_accuracy@10
240
+ value: 0.8888888888888888
241
+ name: Cosine Accuracy@10
242
+ - type: cosine_precision@1
243
+ value: 0.5925925925925926
244
+ name: Cosine Precision@1
245
+ - type: cosine_precision@3
246
+ value: 0.24691358024691354
247
+ name: Cosine Precision@3
248
+ - type: cosine_precision@5
249
+ value: 0.1703703703703704
250
+ name: Cosine Precision@5
251
+ - type: cosine_precision@10
252
+ value: 0.0888888888888889
253
+ name: Cosine Precision@10
254
+ - type: cosine_recall@1
255
+ value: 0.5925925925925926
256
+ name: Cosine Recall@1
257
+ - type: cosine_recall@3
258
+ value: 0.7407407407407407
259
+ name: Cosine Recall@3
260
+ - type: cosine_recall@5
261
+ value: 0.8518518518518519
262
+ name: Cosine Recall@5
263
+ - type: cosine_recall@10
264
+ value: 0.8888888888888888
265
+ name: Cosine Recall@10
266
+ - type: cosine_ndcg@10
267
+ value: 0.7391281504030159
268
+ name: Cosine Ndcg@10
269
+ - type: cosine_mrr@10
270
+ value: 0.6910493827160493
271
+ name: Cosine Mrr@10
272
+ - type: cosine_map@100
273
+ value: 0.6993265993265992
274
+ name: Cosine Map@100
275
+ - task:
276
+ type: information-retrieval
277
+ name: Information Retrieval
278
+ dataset:
279
+ name: dim 64
280
+ type: dim_64
281
+ metrics:
282
+ - type: cosine_accuracy@1
283
+ value: 0.5925925925925926
284
+ name: Cosine Accuracy@1
285
+ - type: cosine_accuracy@3
286
+ value: 0.7407407407407407
287
+ name: Cosine Accuracy@3
288
+ - type: cosine_accuracy@5
289
+ value: 0.8518518518518519
290
+ name: Cosine Accuracy@5
291
+ - type: cosine_accuracy@10
292
+ value: 0.9259259259259259
293
+ name: Cosine Accuracy@10
294
+ - type: cosine_precision@1
295
+ value: 0.5925925925925926
296
+ name: Cosine Precision@1
297
+ - type: cosine_precision@3
298
+ value: 0.24691358024691354
299
+ name: Cosine Precision@3
300
+ - type: cosine_precision@5
301
+ value: 0.1703703703703704
302
+ name: Cosine Precision@5
303
+ - type: cosine_precision@10
304
+ value: 0.09259259259259262
305
+ name: Cosine Precision@10
306
+ - type: cosine_recall@1
307
+ value: 0.5925925925925926
308
+ name: Cosine Recall@1
309
+ - type: cosine_recall@3
310
+ value: 0.7407407407407407
311
+ name: Cosine Recall@3
312
+ - type: cosine_recall@5
313
+ value: 0.8518518518518519
314
+ name: Cosine Recall@5
315
+ - type: cosine_recall@10
316
+ value: 0.9259259259259259
317
+ name: Cosine Recall@10
318
+ - type: cosine_ndcg@10
319
+ value: 0.7456467996361283
320
+ name: Cosine Ndcg@10
321
+ - type: cosine_mrr@10
322
+ value: 0.6892416225749558
323
+ name: Cosine Mrr@10
324
+ - type: cosine_map@100
325
+ value: 0.6932539682539682
326
+ name: Cosine Map@100
327
+ ---
328
+
329
+ # BGE base Financial Matryoshka
330
+
331
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/e5-base](https://huggingface.co/intfloat/e5-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
332
+
333
+ ## Model Details
334
+
335
+ ### Model Description
336
+ - **Model Type:** Sentence Transformer
337
+ - **Base model:** [intfloat/e5-base](https://huggingface.co/intfloat/e5-base) <!-- at revision b533fe4636f4a2507c08ddab40644d20b0006d6a -->
338
+ - **Maximum Sequence Length:** 512 tokens
339
+ - **Output Dimensionality:** 768 tokens
340
+ - **Similarity Function:** Cosine Similarity
341
+ <!-- - **Training Dataset:** Unknown -->
342
+ - **Language:** en
343
+ - **License:** apache-2.0
344
+
345
+ ### Model Sources
346
+
347
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
348
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
349
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
350
+
351
+ ### Full Model Architecture
352
+
353
+ ```
354
+ SentenceTransformer(
355
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
356
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
357
+ (2): Normalize()
358
+ )
359
+ ```
360
+
361
+ ## Usage
362
+
363
+ ### Direct Usage (Sentence Transformers)
364
+
365
+ First install the Sentence Transformers library:
366
+
367
+ ```bash
368
+ pip install -U sentence-transformers
369
+ ```
370
+
371
+ Then you can load this model and run inference.
372
+ ```python
373
+ from sentence_transformers import SentenceTransformer
374
+
375
+ # Download from the 🤗 Hub
376
+ model = SentenceTransformer("ValentinaKim/bge-base-automobile-matryoshka")
377
+ # Run inference
378
+ sentences = [
379
+ "클러스터 조명 밝기 조절은 시동 'ON' 상태에서 인포테인먼트 시스템의 설정> 클러스터/HUD > 화면 밝기를 차례로 선택하면 클러스터의 밝기를 조절할 수 있습니다. 인포테인먼트 시스템 화면에 표시되는 조명밝기 조절 정도를 참고하여 원하는 밝기로 조절하십시오.",
380
+ '클러스터 조명 밝기 조절은 어떻게 하나요?',
381
+ '하이브리드 자동차의 저압 타이어 경고등이 켜졌을 때의 조치는 무엇입니까?',
382
+ ]
383
+ embeddings = model.encode(sentences)
384
+ print(embeddings.shape)
385
+ # [3, 768]
386
+
387
+ # Get the similarity scores for the embeddings
388
+ similarities = model.similarity(embeddings, embeddings)
389
+ print(similarities.shape)
390
+ # [3, 3]
391
+ ```
392
+
393
+ <!--
394
+ ### Direct Usage (Transformers)
395
+
396
+ <details><summary>Click to see the direct usage in Transformers</summary>
397
+
398
+ </details>
399
+ -->
400
+
401
+ <!--
402
+ ### Downstream Usage (Sentence Transformers)
403
+
404
+ You can finetune this model on your own dataset.
405
+
406
+ <details><summary>Click to expand</summary>
407
+
408
+ </details>
409
+ -->
410
+
411
+ <!--
412
+ ### Out-of-Scope Use
413
+
414
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
415
+ -->
416
+
417
+ ## Evaluation
418
+
419
+ ### Metrics
420
+
421
+ #### Information Retrieval
422
+ * Dataset: `dim_768`
423
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
424
+
425
+ | Metric | Value |
426
+ |:--------------------|:----------|
427
+ | cosine_accuracy@1 | 0.5556 |
428
+ | cosine_accuracy@3 | 0.8148 |
429
+ | cosine_accuracy@5 | 0.8519 |
430
+ | cosine_accuracy@10 | 0.9259 |
431
+ | cosine_precision@1 | 0.5556 |
432
+ | cosine_precision@3 | 0.2716 |
433
+ | cosine_precision@5 | 0.1704 |
434
+ | cosine_precision@10 | 0.0926 |
435
+ | cosine_recall@1 | 0.5556 |
436
+ | cosine_recall@3 | 0.8148 |
437
+ | cosine_recall@5 | 0.8519 |
438
+ | cosine_recall@10 | 0.9259 |
439
+ | cosine_ndcg@10 | 0.7436 |
440
+ | cosine_mrr@10 | 0.6849 |
441
+ | **cosine_map@100** | **0.689** |
442
+
443
+ #### Information Retrieval
444
+ * Dataset: `dim_512`
445
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
446
+
447
+ | Metric | Value |
448
+ |:--------------------|:-----------|
449
+ | cosine_accuracy@1 | 0.5556 |
450
+ | cosine_accuracy@3 | 0.7778 |
451
+ | cosine_accuracy@5 | 0.8519 |
452
+ | cosine_accuracy@10 | 0.8889 |
453
+ | cosine_precision@1 | 0.5556 |
454
+ | cosine_precision@3 | 0.2593 |
455
+ | cosine_precision@5 | 0.1704 |
456
+ | cosine_precision@10 | 0.0889 |
457
+ | cosine_recall@1 | 0.5556 |
458
+ | cosine_recall@3 | 0.7778 |
459
+ | cosine_recall@5 | 0.8519 |
460
+ | cosine_recall@10 | 0.8889 |
461
+ | cosine_ndcg@10 | 0.7335 |
462
+ | cosine_mrr@10 | 0.6825 |
463
+ | **cosine_map@100** | **0.6897** |
464
+
465
+ #### Information Retrieval
466
+ * Dataset: `dim_256`
467
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
468
+
469
+ | Metric | Value |
470
+ |:--------------------|:-----------|
471
+ | cosine_accuracy@1 | 0.5926 |
472
+ | cosine_accuracy@3 | 0.7778 |
473
+ | cosine_accuracy@5 | 0.8148 |
474
+ | cosine_accuracy@10 | 0.8889 |
475
+ | cosine_precision@1 | 0.5926 |
476
+ | cosine_precision@3 | 0.2593 |
477
+ | cosine_precision@5 | 0.163 |
478
+ | cosine_precision@10 | 0.0889 |
479
+ | cosine_recall@1 | 0.5926 |
480
+ | cosine_recall@3 | 0.7778 |
481
+ | cosine_recall@5 | 0.8148 |
482
+ | cosine_recall@10 | 0.8889 |
483
+ | cosine_ndcg@10 | 0.7461 |
484
+ | cosine_mrr@10 | 0.6997 |
485
+ | **cosine_map@100** | **0.7074** |
486
+
487
+ #### Information Retrieval
488
+ * Dataset: `dim_128`
489
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
490
+
491
+ | Metric | Value |
492
+ |:--------------------|:-----------|
493
+ | cosine_accuracy@1 | 0.5926 |
494
+ | cosine_accuracy@3 | 0.7407 |
495
+ | cosine_accuracy@5 | 0.8519 |
496
+ | cosine_accuracy@10 | 0.8889 |
497
+ | cosine_precision@1 | 0.5926 |
498
+ | cosine_precision@3 | 0.2469 |
499
+ | cosine_precision@5 | 0.1704 |
500
+ | cosine_precision@10 | 0.0889 |
501
+ | cosine_recall@1 | 0.5926 |
502
+ | cosine_recall@3 | 0.7407 |
503
+ | cosine_recall@5 | 0.8519 |
504
+ | cosine_recall@10 | 0.8889 |
505
+ | cosine_ndcg@10 | 0.7391 |
506
+ | cosine_mrr@10 | 0.691 |
507
+ | **cosine_map@100** | **0.6993** |
508
+
509
+ #### Information Retrieval
510
+ * Dataset: `dim_64`
511
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
512
+
513
+ | Metric | Value |
514
+ |:--------------------|:-----------|
515
+ | cosine_accuracy@1 | 0.5926 |
516
+ | cosine_accuracy@3 | 0.7407 |
517
+ | cosine_accuracy@5 | 0.8519 |
518
+ | cosine_accuracy@10 | 0.9259 |
519
+ | cosine_precision@1 | 0.5926 |
520
+ | cosine_precision@3 | 0.2469 |
521
+ | cosine_precision@5 | 0.1704 |
522
+ | cosine_precision@10 | 0.0926 |
523
+ | cosine_recall@1 | 0.5926 |
524
+ | cosine_recall@3 | 0.7407 |
525
+ | cosine_recall@5 | 0.8519 |
526
+ | cosine_recall@10 | 0.9259 |
527
+ | cosine_ndcg@10 | 0.7456 |
528
+ | cosine_mrr@10 | 0.6892 |
529
+ | **cosine_map@100** | **0.6933** |
530
+
531
+ <!--
532
+ ## Bias, Risks and Limitations
533
+
534
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
535
+ -->
536
+
537
+ <!--
538
+ ### Recommendations
539
+
540
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
541
+ -->
542
+
543
+ ## Training Details
544
+
545
+ ### Training Dataset
546
+
547
+ #### Unnamed Dataset
548
+
549
+
550
+ * Size: 63 training samples
551
+ * Columns: <code>positive</code> and <code>anchor</code>
552
+ * Approximate statistics based on the first 1000 samples:
553
+ | | positive | anchor |
554
+ |:--------|:-------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
555
+ | type | string | string |
556
+ | details | <ul><li>min: 89 tokens</li><li>mean: 181.76 tokens</li><li>max: 365 tokens</li></ul> | <ul><li>min: 22 tokens</li><li>mean: 46.21 tokens</li><li>max: 72 tokens</li></ul> |
557
+ * Samples:
558
+ | positive | anchor |
559
+ |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------|
560
+ | <code>하이브리드 자동차의 전방 차량 출발 알림 기능의 제한 사항은 과격하게 운전할 경우, 빈번하게 차선을 침범할 경우, 차로 이탈방지 보조 등 다른 운전자 보조에 의해 차량이 제어될 경우 등입니다.</code> | <code>하이브리드 자동차의 전방 차량 출발 알림 기능의 제한 사항은 무엇입니까?</code> |
561
+ | <code>파워 트렁크가 정상적으로 작동하지 않으면 무리한 힘을 가하지 마십시오. 파워 트렁크가 손상될 수 있습니다. 반드시 당사 직영 하이테크센터나 블루핸즈에서 점검을 받으십시오.</code> | <code>파워 트렁크가 정상적으로 작동하지 않으면 어떻게 해야 하나요?</code> |
562
+ | <code>에어백 경고 라벨의 주의 사항은 13세 미만의 어린이는 에어백의 팽창 충격으로 다칠 수 있습니다. 어린이에게는 뒷좌석이 안전할 수 있습니다. 유아용 보조 좌석은 동승석에 설치하지 마십시오. 에어백에서 가능한 떨어져 앉으십시오. 좌석 안전벨트와 어린이 보호 장치를 사용하십시오.</code> | <code>에어백 경고 라벨의 주의 사항은 무엇입니까?</code> |
563
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
564
+ ```json
565
+ {
566
+ "loss": "MultipleNegativesRankingLoss",
567
+ "matryoshka_dims": [
568
+ 768,
569
+ 512,
570
+ 256,
571
+ 128,
572
+ 64
573
+ ],
574
+ "matryoshka_weights": [
575
+ 1,
576
+ 1,
577
+ 1,
578
+ 1,
579
+ 1
580
+ ],
581
+ "n_dims_per_step": -1
582
+ }
583
+ ```
584
+
585
+ ### Training Hyperparameters
586
+ #### Non-Default Hyperparameters
587
+
588
+ - `eval_strategy`: epoch
589
+ - `gradient_accumulation_steps`: 64
590
+ - `learning_rate`: 2e-05
591
+ - `num_train_epochs`: 4
592
+ - `lr_scheduler_type`: cosine
593
+ - `warmup_ratio`: 0.1
594
+ - `tf32`: False
595
+ - `load_best_model_at_end`: True
596
+ - `optim`: adamw_torch_fused
597
+ - `batch_sampler`: no_duplicates
598
+
599
+ #### All Hyperparameters
600
+ <details><summary>Click to expand</summary>
601
+
602
+ - `overwrite_output_dir`: False
603
+ - `do_predict`: False
604
+ - `eval_strategy`: epoch
605
+ - `prediction_loss_only`: True
606
+ - `per_device_train_batch_size`: 8
607
+ - `per_device_eval_batch_size`: 8
608
+ - `per_gpu_train_batch_size`: None
609
+ - `per_gpu_eval_batch_size`: None
610
+ - `gradient_accumulation_steps`: 64
611
+ - `eval_accumulation_steps`: None
612
+ - `learning_rate`: 2e-05
613
+ - `weight_decay`: 0.0
614
+ - `adam_beta1`: 0.9
615
+ - `adam_beta2`: 0.999
616
+ - `adam_epsilon`: 1e-08
617
+ - `max_grad_norm`: 1.0
618
+ - `num_train_epochs`: 4
619
+ - `max_steps`: -1
620
+ - `lr_scheduler_type`: cosine
621
+ - `lr_scheduler_kwargs`: {}
622
+ - `warmup_ratio`: 0.1
623
+ - `warmup_steps`: 0
624
+ - `log_level`: passive
625
+ - `log_level_replica`: warning
626
+ - `log_on_each_node`: True
627
+ - `logging_nan_inf_filter`: True
628
+ - `save_safetensors`: True
629
+ - `save_on_each_node`: False
630
+ - `save_only_model`: False
631
+ - `restore_callback_states_from_checkpoint`: False
632
+ - `no_cuda`: False
633
+ - `use_cpu`: False
634
+ - `use_mps_device`: False
635
+ - `seed`: 42
636
+ - `data_seed`: None
637
+ - `jit_mode_eval`: False
638
+ - `use_ipex`: False
639
+ - `bf16`: False
640
+ - `fp16`: False
641
+ - `fp16_opt_level`: O1
642
+ - `half_precision_backend`: auto
643
+ - `bf16_full_eval`: False
644
+ - `fp16_full_eval`: False
645
+ - `tf32`: False
646
+ - `local_rank`: 0
647
+ - `ddp_backend`: None
648
+ - `tpu_num_cores`: None
649
+ - `tpu_metrics_debug`: False
650
+ - `debug`: []
651
+ - `dataloader_drop_last`: False
652
+ - `dataloader_num_workers`: 0
653
+ - `dataloader_prefetch_factor`: None
654
+ - `past_index`: -1
655
+ - `disable_tqdm`: False
656
+ - `remove_unused_columns`: True
657
+ - `label_names`: None
658
+ - `load_best_model_at_end`: True
659
+ - `ignore_data_skip`: False
660
+ - `fsdp`: []
661
+ - `fsdp_min_num_params`: 0
662
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
663
+ - `fsdp_transformer_layer_cls_to_wrap`: None
664
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
665
+ - `deepspeed`: None
666
+ - `label_smoothing_factor`: 0.0
667
+ - `optim`: adamw_torch_fused
668
+ - `optim_args`: None
669
+ - `adafactor`: False
670
+ - `group_by_length`: False
671
+ - `length_column_name`: length
672
+ - `ddp_find_unused_parameters`: None
673
+ - `ddp_bucket_cap_mb`: None
674
+ - `ddp_broadcast_buffers`: False
675
+ - `dataloader_pin_memory`: True
676
+ - `dataloader_persistent_workers`: False
677
+ - `skip_memory_metrics`: True
678
+ - `use_legacy_prediction_loop`: False
679
+ - `push_to_hub`: False
680
+ - `resume_from_checkpoint`: None
681
+ - `hub_model_id`: None
682
+ - `hub_strategy`: every_save
683
+ - `hub_private_repo`: False
684
+ - `hub_always_push`: False
685
+ - `gradient_checkpointing`: False
686
+ - `gradient_checkpointing_kwargs`: None
687
+ - `include_inputs_for_metrics`: False
688
+ - `eval_do_concat_batches`: True
689
+ - `fp16_backend`: auto
690
+ - `push_to_hub_model_id`: None
691
+ - `push_to_hub_organization`: None
692
+ - `mp_parameters`:
693
+ - `auto_find_batch_size`: False
694
+ - `full_determinism`: False
695
+ - `torchdynamo`: None
696
+ - `ray_scope`: last
697
+ - `ddp_timeout`: 1800
698
+ - `torch_compile`: False
699
+ - `torch_compile_backend`: None
700
+ - `torch_compile_mode`: None
701
+ - `dispatch_batches`: None
702
+ - `split_batches`: None
703
+ - `include_tokens_per_second`: False
704
+ - `include_num_input_tokens_seen`: False
705
+ - `neftune_noise_alpha`: None
706
+ - `optim_target_modules`: None
707
+ - `batch_eval_metrics`: False
708
+ - `batch_sampler`: no_duplicates
709
+ - `multi_dataset_batch_sampler`: proportional
710
+
711
+ </details>
712
+
713
+ ### Training Logs
714
+ | Epoch | Step | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
715
+ |:-------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
716
+ | 1.0 | 1 | 0.4923 | 0.5456 | 0.5549 | 0.4722 | 0.5450 |
717
+ | 2.0 | 2 | 0.6184 | 0.6751 | 0.7085 | 0.6313 | 0.7072 |
718
+ | 3.0 | 3 | 0.6810 | 0.6825 | 0.6916 | 0.6933 | 0.6840 |
719
+ | **4.0** | **4** | **0.6993** | **0.7074** | **0.6897** | **0.6933** | **0.689** |
720
+
721
+ * The bold row denotes the saved checkpoint.
722
+
723
+ ### Framework Versions
724
+ - Python: 3.10.14
725
+ - Sentence Transformers: 3.0.1
726
+ - Transformers: 4.41.2
727
+ - PyTorch: 2.1.2+cu121
728
+ - Accelerate: 0.33.0
729
+ - Datasets: 2.19.1
730
+ - Tokenizers: 0.19.1
731
+
732
+ ## Citation
733
+
734
+ ### BibTeX
735
+
736
+ #### Sentence Transformers
737
+ ```bibtex
738
+ @inproceedings{reimers-2019-sentence-bert,
739
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
740
+ author = "Reimers, Nils and Gurevych, Iryna",
741
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
742
+ month = "11",
743
+ year = "2019",
744
+ publisher = "Association for Computational Linguistics",
745
+ url = "https://arxiv.org/abs/1908.10084",
746
+ }
747
+ ```
748
+
749
+ #### MatryoshkaLoss
750
+ ```bibtex
751
+ @misc{kusupati2024matryoshka,
752
+ title={Matryoshka Representation Learning},
753
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
754
+ year={2024},
755
+ eprint={2205.13147},
756
+ archivePrefix={arXiv},
757
+ primaryClass={cs.LG}
758
+ }
759
+ ```
760
+
761
+ #### MultipleNegativesRankingLoss
762
+ ```bibtex
763
+ @misc{henderson2017efficient,
764
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
765
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
766
+ year={2017},
767
+ eprint={1705.00652},
768
+ archivePrefix={arXiv},
769
+ primaryClass={cs.CL}
770
+ }
771
+ ```
772
+
773
+ <!--
774
+ ## Glossary
775
+
776
+ *Clearly define terms in order to be accessible across audiences.*
777
+ -->
778
+
779
+ <!--
780
+ ## Model Card Authors
781
+
782
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
783
+ -->
784
+
785
+ <!--
786
+ ## Model Card Contact
787
+
788
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
789
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "intfloat/e5-base",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d242b90da3320782fe9fef77af20ca3482ec4696ca61fd229f3b890fd659373
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "BertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff