--- language: - vi license: apache-2.0 base_model: google-bert/bert-base-multilingual-cased tags: - generated_from_trainer model-index: - name: bert-base-multilingual-cased_baseline_words results: [] --- # bert-base-multilingual-cased_baseline_words This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the covid19_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0998 - Patient Id: 0.9840 - Name: 0.9182 - Gender: 0.9623 - Age: 0.9725 - Job: 0.7799 - Location: 0.9501 - Organization: 0.8965 - Date: 0.9869 - Symptom And Disease: 0.8626 - Transportation: 0.9885 - F1 Macro: 0.9302 - F1 Micro: 0.9466 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Patient Id | Name | Gender | Age | Job | Location | Organization | Date | Symptom And Disease | Transportation | F1 Macro | F1 Micro | |:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:------:|:------:|:------:|:--------:|:------------:|:------:|:-------------------:|:--------------:|:--------:|:--------:| | 0.1996 | 1.0 | 629 | 0.1207 | 0.9728 | 0.8997 | 0.8414 | 0.9018 | 0.5020 | 0.9030 | 0.7496 | 0.9847 | 0.8064 | 0.9053 | 0.8467 | 0.8959 | | 0.0584 | 2.0 | 1258 | 0.0978 | 0.9793 | 0.9101 | 0.9476 | 0.9726 | 0.5044 | 0.9380 | 0.8738 | 0.9860 | 0.8433 | 0.9091 | 0.8864 | 0.9319 | | 0.0344 | 3.0 | 1887 | 0.0925 | 0.9776 | 0.9125 | 0.9455 | 0.9766 | 0.7216 | 0.9417 | 0.8665 | 0.9865 | 0.8634 | 0.9655 | 0.9157 | 0.9383 | | 0.0222 | 4.0 | 2516 | 0.0971 | 0.9836 | 0.9178 | 0.9556 | 0.9739 | 0.7442 | 0.9493 | 0.8883 | 0.9865 | 0.8579 | 0.9943 | 0.9251 | 0.9443 | | 0.0147 | 5.0 | 3145 | 0.0998 | 0.9840 | 0.9182 | 0.9623 | 0.9725 | 0.7799 | 0.9501 | 0.8965 | 0.9869 | 0.8626 | 0.9885 | 0.9302 | 0.9466 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1