--- language: - vi base_model: vinai/phobert-base-v2 tags: - generated_from_trainer model-index: - name: phobert-base-v2_baseline_words results: [] --- # phobert-base-v2_baseline_words This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on the covid19_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0874 - Patient Id: 0.9824 - Name: 0.9415 - Gender: 0.9647 - Age: 0.9502 - Job: 0.8000 - Location: 0.9509 - Organization: 0.9148 - Date: 0.9860 - Symptom And Disease: 0.8863 - Transportation: 1.0 - F1 Macro: 0.9377 - F1 Micro: 0.9503 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Patient Id | Name | Gender | Age | Job | Location | Organization | Date | Symptom And Disease | Transportation | F1 Macro | F1 Micro | |:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:------:|:------:|:------:|:--------:|:------------:|:------:|:-------------------:|:--------------:|:--------:|:--------:| | 0.4337 | 1.0 | 629 | 0.1664 | 0.9739 | 0.9446 | 0.7794 | 0.9010 | 0.0 | 0.9341 | 0.8413 | 0.9851 | 0.8585 | 0.9885 | 0.8206 | 0.9172 | | 0.1019 | 2.0 | 1258 | 0.1071 | 0.9770 | 0.9340 | 0.9640 | 0.9644 | 0.5412 | 0.9460 | 0.8823 | 0.9865 | 0.8771 | 1.0 | 0.9072 | 0.9402 | | 0.0639 | 3.0 | 1887 | 0.0952 | 0.9797 | 0.928 | 0.9647 | 0.9682 | 0.5799 | 0.9488 | 0.9094 | 0.9847 | 0.8814 | 1.0 | 0.9145 | 0.9445 | | 0.0454 | 4.0 | 2516 | 0.0873 | 0.9820 | 0.9365 | 0.9663 | 0.9632 | 0.7734 | 0.9537 | 0.9075 | 0.9851 | 0.8832 | 1.0 | 0.9351 | 0.9503 | | 0.0365 | 5.0 | 3145 | 0.0874 | 0.9824 | 0.9415 | 0.9647 | 0.9502 | 0.8000 | 0.9509 | 0.9148 | 0.9860 | 0.8863 | 1.0 | 0.9377 | 0.9503 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1