VanillaVanilla
commited on
Commit
·
35afa21
1
Parent(s):
2fac339
firstmodel
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: firstmodel
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 245.22 +/- 15.85
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **firstmodel** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **firstmodel** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d2a26339870>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d2a26339900>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d2a26339990>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d2a26339a20>", "_build": "<function ActorCriticPolicy._build at 0x7d2a26339ab0>", "forward": "<function ActorCriticPolicy.forward at 0x7d2a26339b40>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d2a26339bd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d2a26339c60>", "_predict": "<function ActorCriticPolicy._predict at 0x7d2a26339cf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d2a26339d80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d2a26339e10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d2a26339ea0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d2a264d67c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1695716982160446340, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADPNTT3fhTs+41XvvATGLr4fjdq8VVhmPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDndbHIZIiMAWyUTXsBjAF0lEdAm3E9VWCEpXV9lChoBkdAcA2h8pkPMGgHTWoBaAhHQJtzMS7GvOh1fZQoaAZHQHBjUuYhMaloB01XAWgIR0CbdRH9WIXTdX2UKGgGR0BwBTsrupjuaAdNgAFoCEdAm3heO0b963V9lChoBkdAcOPfcer+52gHTWUBaAhHQJt6ZaRp1zR1fZQoaAZHQHDtS8BdUsFoB02OAWgIR0CbfI+iaiK0dX2UKGgGR0Bxex+NLlFMaAdNQwFoCEdAm39vwEyLynV9lChoBkdAcI1Iqbz9TGgHTV0BaAhHQJuBhFVktmN1fZQoaAZHQG/V6L4vexhoB01IAWgIR0Cbgz+o99tudX2UKGgGR0Bybj6ab4JvaAdNcgFoCEdAm4Zg2ZRbbHV9lChoBkdAbs/w97ngYWgHTW4BaAhHQJuIU+UyHmB1fZQoaAZHQHEVPG6wt8NoB01MAWgIR0Cbii1A7gbZdX2UKGgGR0BtmBB5X2dvaAdNsAFoCEdAm42YvexfOXV9lChoBkdAb8Xe+Eh7mmgHTXwBaAhHQJuPo/X5FgF1fZQoaAZHQHI3YFA3T/hoB01JAWgIR0CbkW8O09hadX2UKGgGR0Bv62wkgOjJaAdNbAFoCEdAm5SQJHAh0XV9lChoBkdAcAqAD7qIJ2gHTUoBaAhHQJuW4XQ+lj51fZQoaAZHQG7UVDKHO8loB01GAWgIR0CbmSgsK9f1dX2UKGgGR0BwRBG+bmU4aAdNRAFoCEdAm50OI/JNkHV9lChoBkdAcEdQ2/BWP2gHTTABaAhHQJufAtL+PzZ1fZQoaAZHQHGD9z0Yj0NoB01AAWgIR0CboLOIInjRdX2UKGgGR0BwlZ7CzkZKaAdNaQFoCEdAm6Oo2S+xnnV9lChoBkdAa3CbaRISUWgHTVUBaAhHQJulas0YTCd1fZQoaAZHQHJdVHJ9y95oB01AAWgIR0Cbpx7N0NjLdX2UKGgGR0ByKF22Xsw+aAdNTgFoCEdAm6n29L6DXnV9lChoBkdAXCz1CgK4QWgHTegDaAhHQJuwq4mTkhl1fZQoaAZHQG/wrZzxPO9oB01zAWgIR0Cbst446wMZdX2UKGgGR0ByBSOjqOcUaAdNeAFoCEdAm7UZOBUaQ3V9lChoBkdAb9hcclw97mgHTVMBaAhHQJu4SxNZeRh1fZQoaAZHQG341v2oNutoB01lAWgIR0CbumX40uUVdX2UKGgGR0BwzQT7EYO2aAdNXgFoCEdAm7w/wZwXInV9lChoBkdAa2YmJm/WUmgHTV4BaAhHQJu/hmz0HyF1fZQoaAZHQHAc3j2i+L5oB02UAWgIR0CbwcztTkyUdX2UKGgGR0Bvmjwx33YdaAdNaAFoCEdAm8TFRpDeCXV9lChoBkdAcHtJ1q33H2gHTU4BaAhHQJvGxAprk811fZQoaAZHQHD3ATZg5R1oB01hAWgIR0CbyT0OmR/3dX2UKGgGR0Bx1hPoFFDwaAdNbAFoCEdAm81PFJg9eXV9lChoBkdAcBMAZsKsuGgHTW0BaAhHQJvQGGtZFG51fZQoaAZHQHCmcjeKsMloB02KAWgIR0Cb0jo4dZJTdX2UKGgGR0Bu2GWnjyWiaAdNhAFoCEdAm9WNZNfw7XV9lChoBkdAbx+cd5prUWgHTU8BaAhHQJvXfmYBvJl1fZQoaAZHQG01E/bCaZxoB01kAWgIR0Cb2ZoouwotdX2UKGgGR0BwEWWD6FdtaAdNjgFoCEdAm9zf336AOXV9lChoBkdAbo15FgDzRWgHTYUBaAhHQJve9yWAwwl1fZQoaAZHQHAEA+2VmjFoB011AWgIR0Cb4pmixmkFdX2UKGgGR0BwGm8brC3xaAdNTwFoCEdAm+Rn6MzdlHV9lChoBkdAcCsF2mpEQWgHTXABaAhHQJvmYLLIPsl1fZQoaAZHQHAmRLGrCFdoB01kAWgIR0Cb6Wvr4WUKdX2UKGgGR0BroOOdXko4aAdNeAFoCEdAm+t9Pk7wKHV9lChoBkdAcGi5nlGPP2gHTacBaAhHQJvtz/95yEN1fZQoaAZHQG3PzUAksz5oB01rAWgIR0Cb8YKyv9tNdX2UKGgGR0BwSYn9ehPCaAdNcgFoCEdAm/N8C1Z1WHV9lChoBkdAcYx04BFNL2gHTUoBaAhHQJv1SUt7KJV1fZQoaAZHQHFs+TJQtSRoB01QAWgIR0Cb+DV+I/JOdX2UKGgGR0Bw3RaLXL/0aAdNqAFoCEdAm/s8JUo8ZHV9lChoBkdAa4zTodMj/2gHTXEBaAhHQJv9yBy0a611fZQoaAZHQHFq690zTF5oB02FAWgIR0CcAkos7MgVdX2UKGgGR0Bwrhu2qkuZaAdNTQFoCEdAnAQXuqm0mnV9lChoBkdAcGWxsVLzw2gHTWUBaAhHQJwHB3ljmS11fZQoaAZHQG0oeDFqBVdoB01zAWgIR0CcCRCU5dWydX2UKGgGR8ARqXMQmNR4aAdNHQFoCEdAnArDrE9+w3V9lChoBkdAXE2bExZdOmgHTegDaAhHQJwR4hTwUg11fZQoaAZHQGvBhS1maphoB01uAWgIR0CcE8+evpyIdX2UKGgGR0BtPmby6MBIaAdNSgFoCEdAnBbO7+T/yXV9lChoBkdAcFBIg/1QImgHTXUBaAhHQJwZQ9ZA6dV1fZQoaAZHQG1mRZuAI6doB02uAWgIR0CcHMDr7fpEdX2UKGgGR0BxtpYxL0z1aAdNXgFoCEdAnB6We6I3znV9lChoBkdAbRq2/BWPtGgHTU4BaAhHQJwgW1QZXMh1fZQoaAZHQHDRN/BnBcloB01rAWgIR0CcI6D7IkqudX2UKGgGR0BxCAqd6LOzaAdNQgFoCEdAnCVv/vOQhnV9lChoBkdAPk1BdD6WPmgHTR8BaAhHQJwnAOBlMAZ1fZQoaAZHQG+mHBciW3VoB01RAWgIR0CcKhEdNnGsdX2UKGgGR0Bww2sV+I/JaAdNdQFoCEdAnCzGkSElFHV9lChoBkdAcHHMCLdepmgHTWkBaAhHQJwvW+49X911fZQoaAZHQHJtDgMtsepoB00jAWgIR0CcMwJtzjm0dX2UKGgGR0BwvdXHR1HOaAdNPAFoCEdAnDTV2eQMhHV9lChoBkdAcEerDqGDc2gHTVsBaAhHQJw2wPK+zt11fZQoaAZHQHAd+LR8c+9oB01kAWgIR0CcObTjvNNbdX2UKGgGR0BvYAlpoK2KaAdNegFoCEdAnDu6mj0tiHV9lChoBkdAcnifyPMjeWgHTV8BaAhHQJw9l9srNGF1fZQoaAZHQHHHnQtz0YloB00+AWgIR0CcQFe/pMYedX2UKGgGR0Bsab+FUQ05aAdNTgFoCEdAnEIjvd/KAHV9lChoBkdAb7HDaXa8H2gHTUoBaAhHQJxD20eEIxB1fZQoaAZHQG+VJU5uIh1oB01mAWgIR0CcRscOskprdX2UKGgGR0BwwRRk3CKraAdNcgFoCEdAnEi3kkrwv3V9lChoBkdAavwMnZ00WWgHTWoBaAhHQJxK04zabnZ1fZQoaAZHQGI1mff4yoJoB03oA2gIR0CcUX3Lmp2mdX2UKGgGR0BtkPnIQvpRaAdNpgFoCEdAnFT3mV7hN3V9lChoBkdAbZolFc6eXmgHTXYBaAhHQJxW+nqFAVx1fZQoaAZHQG73sju8brFoB01iAWgIR0CcWNyDZlFudX2UKGgGR0BvgTnFHaviaAdNcgFoCEdAnFxDGYKIBXV9lChoBkdAcXhMZP2wmmgHTVcBaAhHQJxe3R2KVIJ1fZQoaAZHQHHrLwz+FURoB00zA2gIR0CcZk/zJ6ppdX2UKGgGR0BwyjIp6QeWaAdNQQFoCEdAnGgTc6/7BXV9lChoBkdAa9DzbvgFYGgHTUoBaAhHQJxq9/tpmEp1fZQoaAZHQG/5Wq94/u9oB01sAWgIR0CcbPq3EyckdX2UKGgGR0BvtwyKvV3EaAdNawFoCEdAnG8AW3z+WHV9lChoBkdAcampRoAXEmgHTU4BaAhHQJxx6DlHSWt1fZQoaAZHQHHj4oZydWhoB00/AWgIR0Ccc9u/UONHdX2UKGgGR0ByRHlEJBw/aAdNowFoCEdAnHZVWXC0nnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4617fa1149860cd3453374b48b61243a62a221e908a69d88e2cf95e3ddd7d765
|
3 |
+
size 146101
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7d2a26339870>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d2a26339900>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d2a26339990>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d2a26339a20>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7d2a26339ab0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7d2a26339b40>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7d2a26339bd0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d2a26339c60>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7d2a26339cf0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d2a26339d80>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d2a26339e10>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7d2a26339ea0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7d2a264d67c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1000448,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1695716982160446340,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADPNTT3fhTs+41XvvATGLr4fjdq8VVhmPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.00044800000000000395,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDndbHIZIiMAWyUTXsBjAF0lEdAm3E9VWCEpXV9lChoBkdAcA2h8pkPMGgHTWoBaAhHQJtzMS7GvOh1fZQoaAZHQHBjUuYhMaloB01XAWgIR0CbdRH9WIXTdX2UKGgGR0BwBTsrupjuaAdNgAFoCEdAm3heO0b963V9lChoBkdAcOPfcer+52gHTWUBaAhHQJt6ZaRp1zR1fZQoaAZHQHDtS8BdUsFoB02OAWgIR0CbfI+iaiK0dX2UKGgGR0Bxex+NLlFMaAdNQwFoCEdAm39vwEyLynV9lChoBkdAcI1Iqbz9TGgHTV0BaAhHQJuBhFVktmN1fZQoaAZHQG/V6L4vexhoB01IAWgIR0Cbgz+o99tudX2UKGgGR0Bybj6ab4JvaAdNcgFoCEdAm4Zg2ZRbbHV9lChoBkdAbs/w97ngYWgHTW4BaAhHQJuIU+UyHmB1fZQoaAZHQHEVPG6wt8NoB01MAWgIR0Cbii1A7gbZdX2UKGgGR0BtmBB5X2dvaAdNsAFoCEdAm42YvexfOXV9lChoBkdAb8Xe+Eh7mmgHTXwBaAhHQJuPo/X5FgF1fZQoaAZHQHI3YFA3T/hoB01JAWgIR0CbkW8O09hadX2UKGgGR0Bv62wkgOjJaAdNbAFoCEdAm5SQJHAh0XV9lChoBkdAcAqAD7qIJ2gHTUoBaAhHQJuW4XQ+lj51fZQoaAZHQG7UVDKHO8loB01GAWgIR0CbmSgsK9f1dX2UKGgGR0BwRBG+bmU4aAdNRAFoCEdAm50OI/JNkHV9lChoBkdAcEdQ2/BWP2gHTTABaAhHQJufAtL+PzZ1fZQoaAZHQHGD9z0Yj0NoB01AAWgIR0CboLOIInjRdX2UKGgGR0BwlZ7CzkZKaAdNaQFoCEdAm6Oo2S+xnnV9lChoBkdAa3CbaRISUWgHTVUBaAhHQJulas0YTCd1fZQoaAZHQHJdVHJ9y95oB01AAWgIR0Cbpx7N0NjLdX2UKGgGR0ByKF22Xsw+aAdNTgFoCEdAm6n29L6DXnV9lChoBkdAXCz1CgK4QWgHTegDaAhHQJuwq4mTkhl1fZQoaAZHQG/wrZzxPO9oB01zAWgIR0Cbst446wMZdX2UKGgGR0ByBSOjqOcUaAdNeAFoCEdAm7UZOBUaQ3V9lChoBkdAb9hcclw97mgHTVMBaAhHQJu4SxNZeRh1fZQoaAZHQG341v2oNutoB01lAWgIR0CbumX40uUVdX2UKGgGR0BwzQT7EYO2aAdNXgFoCEdAm7w/wZwXInV9lChoBkdAa2YmJm/WUmgHTV4BaAhHQJu/hmz0HyF1fZQoaAZHQHAc3j2i+L5oB02UAWgIR0CbwcztTkyUdX2UKGgGR0Bvmjwx33YdaAdNaAFoCEdAm8TFRpDeCXV9lChoBkdAcHtJ1q33H2gHTU4BaAhHQJvGxAprk811fZQoaAZHQHD3ATZg5R1oB01hAWgIR0CbyT0OmR/3dX2UKGgGR0Bx1hPoFFDwaAdNbAFoCEdAm81PFJg9eXV9lChoBkdAcBMAZsKsuGgHTW0BaAhHQJvQGGtZFG51fZQoaAZHQHCmcjeKsMloB02KAWgIR0Cb0jo4dZJTdX2UKGgGR0Bu2GWnjyWiaAdNhAFoCEdAm9WNZNfw7XV9lChoBkdAbx+cd5prUWgHTU8BaAhHQJvXfmYBvJl1fZQoaAZHQG01E/bCaZxoB01kAWgIR0Cb2ZoouwotdX2UKGgGR0BwEWWD6FdtaAdNjgFoCEdAm9zf336AOXV9lChoBkdAbo15FgDzRWgHTYUBaAhHQJve9yWAwwl1fZQoaAZHQHAEA+2VmjFoB011AWgIR0Cb4pmixmkFdX2UKGgGR0BwGm8brC3xaAdNTwFoCEdAm+Rn6MzdlHV9lChoBkdAcCsF2mpEQWgHTXABaAhHQJvmYLLIPsl1fZQoaAZHQHAmRLGrCFdoB01kAWgIR0Cb6Wvr4WUKdX2UKGgGR0BroOOdXko4aAdNeAFoCEdAm+t9Pk7wKHV9lChoBkdAcGi5nlGPP2gHTacBaAhHQJvtz/95yEN1fZQoaAZHQG3PzUAksz5oB01rAWgIR0Cb8YKyv9tNdX2UKGgGR0BwSYn9ehPCaAdNcgFoCEdAm/N8C1Z1WHV9lChoBkdAcYx04BFNL2gHTUoBaAhHQJv1SUt7KJV1fZQoaAZHQHFs+TJQtSRoB01QAWgIR0Cb+DV+I/JOdX2UKGgGR0Bw3RaLXL/0aAdNqAFoCEdAm/s8JUo8ZHV9lChoBkdAa4zTodMj/2gHTXEBaAhHQJv9yBy0a611fZQoaAZHQHFq690zTF5oB02FAWgIR0CcAkos7MgVdX2UKGgGR0Bwrhu2qkuZaAdNTQFoCEdAnAQXuqm0mnV9lChoBkdAcGWxsVLzw2gHTWUBaAhHQJwHB3ljmS11fZQoaAZHQG0oeDFqBVdoB01zAWgIR0CcCRCU5dWydX2UKGgGR8ARqXMQmNR4aAdNHQFoCEdAnArDrE9+w3V9lChoBkdAXE2bExZdOmgHTegDaAhHQJwR4hTwUg11fZQoaAZHQGvBhS1maphoB01uAWgIR0CcE8+evpyIdX2UKGgGR0BtPmby6MBIaAdNSgFoCEdAnBbO7+T/yXV9lChoBkdAcFBIg/1QImgHTXUBaAhHQJwZQ9ZA6dV1fZQoaAZHQG1mRZuAI6doB02uAWgIR0CcHMDr7fpEdX2UKGgGR0BxtpYxL0z1aAdNXgFoCEdAnB6We6I3znV9lChoBkdAbRq2/BWPtGgHTU4BaAhHQJwgW1QZXMh1fZQoaAZHQHDRN/BnBcloB01rAWgIR0CcI6D7IkqudX2UKGgGR0BxCAqd6LOzaAdNQgFoCEdAnCVv/vOQhnV9lChoBkdAPk1BdD6WPmgHTR8BaAhHQJwnAOBlMAZ1fZQoaAZHQG+mHBciW3VoB01RAWgIR0CcKhEdNnGsdX2UKGgGR0Bww2sV+I/JaAdNdQFoCEdAnCzGkSElFHV9lChoBkdAcHHMCLdepmgHTWkBaAhHQJwvW+49X911fZQoaAZHQHJtDgMtsepoB00jAWgIR0CcMwJtzjm0dX2UKGgGR0BwvdXHR1HOaAdNPAFoCEdAnDTV2eQMhHV9lChoBkdAcEerDqGDc2gHTVsBaAhHQJw2wPK+zt11fZQoaAZHQHAd+LR8c+9oB01kAWgIR0CcObTjvNNbdX2UKGgGR0BvYAlpoK2KaAdNegFoCEdAnDu6mj0tiHV9lChoBkdAcnifyPMjeWgHTV8BaAhHQJw9l9srNGF1fZQoaAZHQHHHnQtz0YloB00+AWgIR0CcQFe/pMYedX2UKGgGR0Bsab+FUQ05aAdNTgFoCEdAnEIjvd/KAHV9lChoBkdAb7HDaXa8H2gHTUoBaAhHQJxD20eEIxB1fZQoaAZHQG+VJU5uIh1oB01mAWgIR0CcRscOskprdX2UKGgGR0BwwRRk3CKraAdNcgFoCEdAnEi3kkrwv3V9lChoBkdAavwMnZ00WWgHTWoBaAhHQJxK04zabnZ1fZQoaAZHQGI1mff4yoJoB03oA2gIR0CcUX3Lmp2mdX2UKGgGR0BtkPnIQvpRaAdNpgFoCEdAnFT3mV7hN3V9lChoBkdAbZolFc6eXmgHTXYBaAhHQJxW+nqFAVx1fZQoaAZHQG73sju8brFoB01iAWgIR0CcWNyDZlFudX2UKGgGR0BvgTnFHaviaAdNcgFoCEdAnFxDGYKIBXV9lChoBkdAcXhMZP2wmmgHTVcBaAhHQJxe3R2KVIJ1fZQoaAZHQHHrLwz+FURoB00zA2gIR0CcZk/zJ6ppdX2UKGgGR0BwyjIp6QeWaAdNQQFoCEdAnGgTc6/7BXV9lChoBkdAa9DzbvgFYGgHTUoBaAhHQJxq9/tpmEp1fZQoaAZHQG/5Wq94/u9oB01sAWgIR0CcbPq3EyckdX2UKGgGR0BvtwyKvV3EaAdNawFoCEdAnG8AW3z+WHV9lChoBkdAcampRoAXEmgHTU4BaAhHQJxx6DlHSWt1fZQoaAZHQHHj4oZydWhoB00/AWgIR0Ccc9u/UONHdX2UKGgGR0ByRHlEJBw/aAdNowFoCEdAnHZVWXC0nnVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 3908,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 1,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec96a24f9cbd3f8caf67450561902cc57a375de6717a6c61257cada6e055222e
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05915a5665ba7636f9f987f48a9c34f59742f322554424ba51d00029538daf85
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (164 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 245.2183914520151, "std_reward": 15.850168188274699, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-26T09:11:10.055639"}
|