File size: 13,672 Bytes
3712b93 |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bd5a716e680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bd5a716e710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bd5a716e7a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bd5a716e830>", "_build": "<function ActorCriticPolicy._build at 0x7bd5a716e8c0>", "forward": "<function ActorCriticPolicy.forward at 0x7bd5a716e950>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bd5a716e9e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bd5a716ea70>", "_predict": "<function ActorCriticPolicy._predict at 0x7bd5a716eb00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bd5a716eb90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bd5a716ec20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bd5a716ecb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bd5a7116c80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1719125182270923391, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAMA6O77BRqy8Rpu3vJsBQ7sNihU+lE0ZPAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCHBQBPsRiMAWyUTVIBjAF0lEdAk/8H7Lt/nXV9lChoBkdAcRRSXdCVr2gHTUUBaAhHQJQBThGYrrh1fZQoaAZHQHGDJ71Iy0toB00KAWgIR0CUAlgFX7tRdX2UKGgGR0BNPB1s+FDfaAdL7WgIR0CUAzMnqmj1dX2UKGgGR0BAgk74i5d4aAdL22gIR0CUA/J4SpR5dX2UKGgGR0BxZkaef7JoaAdNFgFoCEdAlAYewHJLd3V9lChoBkdASG7t5UtI1GgHS9loCEdAlAbprHlwLnV9lChoBkdAcUHpLEk0JmgHTTUBaAhHQJQH+mGdqcp1fZQoaAZHQHG0jwUg0TFoB00wAWgIR0CUCQe3hGYsdX2UKGgGR0BxD0t8NQTFaAdNQwFoCEdAlAtZBkZrHnV9lChoBkdAbdKMMI/qxGgHTSQBaAhHQJQMX/82rGR1fZQoaAZHQHDo2mYSg5BoB00fAWgIR0CUDdVQhwERdX2UKGgGR0BwlU8aGYa6aAdNVQFoCEdAlBFNsSCe3HV9lChoBkdAcYM2gFotc2gHTRwBaAhHQJQSu5SWJJp1fZQoaAZHQG9EI+W4Vh1oB00rAWgIR0CUFDscyWRjdX2UKGgGR0Bxa1Id2gWaaAdNKAFoCEdAlBdnDaXa8HV9lChoBkdAbCfTAnDziGgHTTYBaAhHQJQY8rEtNBZ1fZQoaAZHQHIBqfWcz69oB00cAWgIR0CUGnCVrylOdX2UKGgGR0BtqzeVLSNPaAdNKQFoCEdAlBt09dNWVHV9lChoBkfAAhzVc2R7q2gHS+loCEdAlB1YW+GoJnV9lChoBkdAQNBwuM+/xmgHS/FoCEdAlB4ypNsWPHV9lChoBkdAcAWU0Nz8xmgHTUwBaAhHQJQfZ0KZ2IR1fZQoaAZHQHGvoNAkcCJoB01ZAWgIR0CUIcHymQ8wdX2UKGgGR0BtMDo6jnFHaAdNbwFoCEdAlCMYMF2V3XV9lChoBkdAbEo7muDBdmgHTRwBaAhHQJQkH8rI5o51fZQoaAZHQHH4HVXmvGJoB01eAWgIR0CUJWETg2qDdX2UKGgGR0BvTxCrtE5RaAdNFAFoCEdAlCdtSMtK7XV9lChoBkdAbeLHAh0QsmgHTRoBaAhHQJQodSrHU+d1fZQoaAZHQHAjbjHXEqFoB00/AWgIR0CUKZrZ8KG+dX2UKGgGR0BmABq9GqgiaAdNpwFoCEdAlCw+w9q1xHV9lChoBkdAbpo3WFvhqGgHTRQBaAhHQJQtMRxtHhF1fZQoaAZHQHFc3h0hePdoB00tAWgIR0CULkDyvs7ddX2UKGgGR0ByVUsH0K7aaAdNMwFoCEdAlDB9I065oXV9lChoBkdAbjaM1jy4F2gHTRgBaAhHQJQxfPa+N991fZQoaAZHQE79lXA/LTxoB0vfaAhHQJQyQcYIjW11fZQoaAZHQHByjKgZjx1oB01RAWgIR0CUM3JA+pwTdX2UKGgGR0BwB0K0D2alaAdNGQFoCEdAlDWct5D7ZXV9lChoBkdAcF2UtI0652gHTTkBaAhHQJQ2so6S1Vp1fZQoaAZHQHAqGHLzPKNoB00+AWgIR0CUN8pUxVQzdX2UKGgGR0BtHOR/3FkyaAdNFAFoCEdAlDni8rZrYXV9lChoBkdAbDIGahHskmgHTT0BaAhHQJQ7ANNJvpB1fZQoaAZHQHHxFTFVDKJoB00pAWgIR0CUPAjoZAIIdX2UKGgGR0BwC/rv9cbBaAdL9mgIR0CUPPNy5qdpdX2UKGgGR0Bxgsm2LHdXaAdNKwFoCEdAlD8XtOVPe3V9lChoBkdAbsJDUExIrmgHTSQBaAhHQJRAFtWMju91fZQoaAZHQGvHjdgv115oB001AWgIR0CUQTu3+dbxdX2UKGgGR0BxAmOyVv/BaAdNVwFoCEdAlEQrZi/fwnV9lChoBkdAbb3XdTHbRGgHTUkBaAhHQJRFteu3c591fZQoaAZHQHDG38wYcedoB004AWgIR0CURxiPhhphdX2UKGgGR0ByqGIpH7P6aAdNNAFoCEdAlEpI9gWrO3V9lChoBkdAKSFlTWGyomgHS/VoCEdAlEt5RbbDdnV9lChoBkdAcD4y9VWCE2gHTTABaAhHQJRM8ntv4ud1fZQoaAZHQG234RdyDI1oB00nAWgIR0CUTo/Y8Md+dX2UKGgGR0ByXTX/YJ3QaAdNYgFoCEdAlFGm6shgV3V9lChoBkdASu0AJb+tKmgHS+FoCEdAlFJ3YDklu3V9lChoBkdAcQ4Hk92X9mgHTWABaAhHQJRTq+N96Tp1fZQoaAZHQHKO/5gw485oB00pAWgIR0CUVcUsFt9AdX2UKGgGR0BwTTCfpUxVaAdNHgFoCEdAlFbPnW8RMHV9lChoBkdAcH8fO2RaHWgHTR0BaAhHQJRXzkmx+rl1fZQoaAZHQHGmoUN8VpNoB00cAWgIR0CUWMoysS00dX2UKGgGR0BuSvSH/LkkaAdNPgFoCEdAlFtRRuTA33V9lChoBkdAcqOISUTtcGgHTUIBaAhHQJRcbdi2Dxt1fZQoaAZHQHCCh1xKg7JoB00oAWgIR0CUXXNfw7T2dX2UKGgGR0BwHNW0Z3s5aAdNLwFoCEdAlF+uBUaQ3nV9lChoBkdAb0yLxZuAJGgHTSwBaAhHQJRguUPhAGB1fZQoaAZHQHHurZzxPO9oB01RAWgIR0CUYeeMhougdX2UKGgGR0BFucsUZeiSaAdL6mgIR0CUYsFGG21EdX2UKGgGR0Bx4fhn8KoiaAdNQAFoCEdAlGTxptaY/nV9lChoBkdAcneT4+KTCGgHTSIBaAhHQJRl9BAv+Ox1fZQoaAZHQG8fxIre67NoB004AWgIR0CUZxafzz3AdX2UKGgGR0BuFlXmvGIbaAdNOgFoCEdAlGlJ+6RQrXV9lChoBkdAcmOCMPz4DmgHTUMBaAhHQJRqoC2c8T11fZQoaAZHQGvKAJswco9oB00zAWgIR0CUa69/jKgadX2UKGgGR0BzWTLA57w8aAdNWwFoCEdAlG3/4ubqhXV9lChoBkdAcn3yjYZl4GgHTUoBaAhHQJRvMjTrmhd1fZQoaAZHQHFm/GEPDpFoB01rAWgIR0CUcG9ph4MXdX2UKGgGR0BwTPLcKw6iaAdNGQFoCEdAlHKE/r0J4XV9lChoBkdAb2chTOxB3WgHTU4BaAhHQJRz3cuanaZ1fZQoaAZHQHNw74N7SiNoB00fAWgIR0CUdRHaN+9bdX2UKGgGR0BvC5nezlcRaAdNUAFoCEdAlHdQvlEJB3V9lChoBkdAb2d6Tnq3VmgHTWsBaAhHQJR4zBciW3V1fZQoaAZHQHFHrojfNzNoB00hA2gIR0CUfr/y5I6KdX2UKGgGR0BvcaAz544ZaAdNYQFoCEdAlICp8rqdH3V9lChoBkdAbxr74SHuZ2gHTSMBaAhHQJSCMNCqp991fZQoaAZHQHGzZm7J4jdoB01AAWgIR0CUhWuDSPU8dX2UKGgGR8AXI8FINEw4aAdL4WgIR0CUhjN70Fr3dX2UKGgGR0Bu71um78NyaAdNXQFoCEdAlIdwmZ3LWHV9lChoBkdAcHlScLBsRGgHTWIBaAhHQJSJxoqTbFl1fZQoaAZHQG+oh1klNURoB00cAWgIR0CUisUCq6vrdX2UKGgGR0BhkSePJaJRaAdN6ANoCEdAlI94od+5OXV9lChoBkdAKrRc/t6X0GgHS/FoCEdAlJBXeFcps3V9lChoBkdAcD44gRsdk2gHTQgBaAhHQJSRP/4qPOp1fZQoaAZHQG9mc/dIoVpoB02eAWgIR0CUk8kXDWK/dX2UKGgGR0Bx++BNEgGKaAdNSwFoCEdAlJTz2FnIyXV9lChoBkdAbhOOmR/3FmgHTWsBaAhHQJSWODh99c91fZQoaAZHQG3WWQfZElVoB01MAWgIR0CUmHNBF/hEdX2UKGgGR0Bx5ImOU+s6aAdNHgFoCEdAlJl07nxJ/XV9lChoBkdAbyt12aDwpmgHTUEBaAhHQJSalgVoHs11fZQoaAZHQG+8OI68xsVoB01WAWgIR0CUnNJGvwEydX2UKGgGR0BAS2mP5pJxaAdL/2gIR0CUnc8FINExdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVOwMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoR6qrhODzLvr0Ic+cgg2G8zQCMA2luY5SKEec4Ksg5j/ssHj2UW+ZhVaMAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVoQEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQ40FWLXtv7qvMGIwv6RK+T4wDaW5jlIoQgyWjmvs4820Y/Iov6tDqVXWMCmhhc191aW50MzKUSwGMCHVpbnRlZ2VylEqK/CVLdWJ1Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "False", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |