Venkat-Shadeslayer commited on
Commit
e2fa442
1 Parent(s): 463a411

End of training

Browse files
Files changed (1) hide show
  1. README.md +62 -0
README.md ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: distilbert-base-uncased
5
+ tags:
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: distilbert-base-uncased-finetuned-imdb
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # distilbert-base-uncased-finetuned-imdb
16
+
17
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 2.4823
20
+ - Model Preparation Time: 0.0033
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 2e-05
40
+ - train_batch_size: 64
41
+ - eval_batch_size: 64
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - num_epochs: 3.0
46
+ - mixed_precision_training: Native AMP
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time |
51
+ |:-------------:|:-----:|:----:|:---------------:|:----------------------:|
52
+ | 2.6819 | 1.0 | 157 | 2.4978 | 0.0033 |
53
+ | 2.5872 | 2.0 | 314 | 2.4488 | 0.0033 |
54
+ | 2.527 | 3.0 | 471 | 2.4823 | 0.0033 |
55
+
56
+
57
+ ### Framework versions
58
+
59
+ - Transformers 4.44.2
60
+ - Pytorch 2.4.0+cu121
61
+ - Datasets 3.0.0
62
+ - Tokenizers 0.19.1