Venkatesh4342 commited on
Commit
53069c4
1 Parent(s): 5cc27a7

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -0
README.md ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - f1
7
+ model-index:
8
+ - name: xlm-roberta-base-NER-ind
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # xlm-roberta-base-NER-ind
16
+
17
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.1403
20
+ - F1: 0.8061
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 5e-05
40
+ - train_batch_size: 32
41
+ - eval_batch_size: 32
42
+ - seed: 42
43
+ - gradient_accumulation_steps: 3
44
+ - total_train_batch_size: 96
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - num_epochs: 4
48
+ - mixed_precision_training: Native AMP
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | F1 |
53
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
54
+ | No log | 1.0 | 2458 | 0.1421 | 0.7883 |
55
+ | No log | 2.0 | 4916 | 0.1365 | 0.8004 |
56
+ | 0.1393 | 3.0 | 7375 | 0.1344 | 0.8129 |
57
+ | 0.1393 | 4.0 | 9832 | 0.1403 | 0.8061 |
58
+
59
+
60
+ ### Framework versions
61
+
62
+ - Transformers 4.27.0
63
+ - Pytorch 2.0.1+cu118
64
+ - Datasets 2.13.1
65
+ - Tokenizers 0.13.3