--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: deberta-v3-base-Whatsapp-ner results: [] --- # deberta-v3-base-Whatsapp-ner This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0281 - Precision: 0.9483 - Recall: 0.9649 - F1: 0.9565 - Accuracy: 0.9881 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 58 | 0.1096 | 0.8852 | 0.9474 | 0.9153 | 0.9711 | | No log | 2.0 | 116 | 0.0573 | 0.9569 | 0.9737 | 0.9652 | 0.9830 | | No log | 3.0 | 174 | 0.0444 | 0.9402 | 0.9649 | 0.9524 | 0.9830 | | No log | 4.0 | 232 | 0.0272 | 0.9402 | 0.9649 | 0.9524 | 0.9864 | | No log | 5.0 | 290 | 0.0322 | 0.9402 | 0.9649 | 0.9524 | 0.9864 | | No log | 6.0 | 348 | 0.0281 | 0.9483 | 0.9649 | 0.9565 | 0.9881 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2