Victarry commited on
Commit
ffc6731
·
1 Parent(s): 7af8555

Update PPO LunarLander-v2 trained agent

Browse files
MLP-PPO-LunarLander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2286d99e08e144e6f7b30f88f13c42a90ccb9c336b9975b2e944661d459904c7
3
+ size 148008
MLP-PPO-LunarLander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
MLP-PPO-LunarLander/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7effbb3255e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7effbb325670>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7effbb325700>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7effbb325790>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7effbb325820>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7effbb3258b0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7effbb325940>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7effbb3259d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7effbb325a60>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7effbb325af0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7effbb325b80>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7effbb3a3240>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 32,
45
+ "num_timesteps": 10027008,
46
+ "_total_timesteps": 10000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1672849053602448474,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGMvZGF0YTEvemhlbmh1YW5fbGl1L2FuYWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGMvZGF0YTEvemhlbmh1YW5fbGl1L2FuYWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAGY0sjx7SpK6Q6cQOFY2CzMRXtC69ogntwAAgD8AAIA/wKqIPR+95bmWVyE41S6QsoqVsbuwlD23AACAPwAAgD+zhjk9PeYZu+qzBb6JQYA82fQhPA69Xr0AAIA/AACAP3Mw+b07ZIM/GFqpvoGcVb/JP1++E/XkvQAAAAAAAAAAM/fZuxeYqz+YT6C94pwGv51XAzyr/Ei9AAAAAAAAAABA1oA9xICvP+Pc0T41EZy+w8aWPNu9az0AAAAAAAAAALNbI72f4ec8iwP2Pd7tn76zrJS9K5nBPAAAAAAAAAAAGv0TPTPgnz/B3iw+3fUcvykEdD0YR8E9AAAAAAAAAAAz0gU9SKG7P97Maz6iDMW8zKANvdcCsb0AAAAAAAAAAGYAqLzhZKq6vikfvV2acbE2v3g5ZQWRswAAgD8AAIA/mrqZPCnsS7rRUDA4ydlyM59gKLtre063AACAPwAAgD8zgwc8Jm1KPyHTSTywA3O/wlzjvDzwRDwAAAAAAAAAABp/8D2U3zU/+DHqPelwUr83im4+PN2nvAAAAAAAAAAA2nUGPp/iTj82kXo+hmpfvzv6dT6nJ0c9AAAAAAAAAAAz7RS9XEsDunQUIzNPPVywvj7LOkgFpLMAAIA/AACAP7MYX71IiYu65gPtNhGZVbCdNhG7UuQHtgAAgD8AAIA/qilUviyABz8v8RA8kwcsv/Rgk76qsak7AAAAAAAAAAAzkPC9A0VYPX1ucT7m96G+c7DEvaC1QD4AAAAAAAAAAGZLhb2Vfxs+VclmPcN8B79VAaq9yKxePQAAAAAAAAAAWkyWveFIgbo0zTi3P0ecslX2WzkgeVQ2AACAPwAAgD8arFu9ZkKrP52T+7402uO+5oPQvD0aYr4AAAAAAAAAACDLNj5L4aY/EJbaPkdGHb9wazk+WmSbPgAAAAAAAAAANqh0vlXbZT5F6bA+ceMNvxIQO76Livc9AAAAAAAAAABAboc9IUpqP3RvKD48zmy/6Bu7PVMbMD4AAAAAAAAAAMBfxr1C5ec+t8NEPSXyVb9bkOm9WsOYPQAAAAAAAAAAGghoPeHso7o2gHyzEwLrLlA6GThSJrszAACAPwAAAACaJ3i9UiDDuSoHzzZx7EkyMNTKO0rH8rUAAIA/AACAP2ZCgL0wpbc/oq0Pvvq20b7edOa8JGBBvgAAAAAAAAAAjXsTvvGGAD9ALMe99/hCv9FBS742Uao7AAAAAAAAAAAmTVA+59V/PiACt76ybgi/7vvKPZXQkb4AAAAAAAAAADN3rjwoPpo/BnkTPk41Xb/A/YA97uofPgAAAAAAAAAAILISPsPJGrw+yyw7zFEmuaTHeb1rgWS6AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.0027007999999999477,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMItoKmJZZ0ckCUhpRSlIwBbJRLr4wBdJRHQLS5eu2Zy+91fZQoaAZoCWgPQwgGaFvN+vdyQJSGlFKUaBVLkWgWR0C0uXyQ1aW5dX2UKGgGaAloD0MIxa2CGKixckCUhpRSlGgVS8doFkdAtLl+dQO4G3V9lChoBmgJaA9DCNl5G5sdA3JAlIaUUpRoFUu8aBZHQLS5gmPo3aV1fZQoaAZoCWgPQwisONVaWLtyQJSGlFKUaBVLp2gWR0C0uZD0pVjqdX2UKGgGaAloD0MIC3xFt15jckCUhpRSlGgVS7NoFkdAtLmuO0b963V9lChoBmgJaA9DCNzXgXNGKHFAlIaUUpRoFUt/aBZHQLS5u9bHIZJ1fZQoaAZoCWgPQwheEJGa9lJmQJSGlFKUaBVN6ANoFkdAtLnAaZQYUHV9lChoBmgJaA9DCCVBuAIKfnBAlIaUUpRoFUugaBZHQLS5wtPHktF1fZQoaAZoCWgPQwg0LEZd69RxQJSGlFKUaBVLlWgWR0C0ucJUDMePdX2UKGgGaAloD0MII57sZoa5cUCUhpRSlGgVS8RoFkdAtLncAjps43V9lChoBmgJaA9DCIDXZ876anJAlIaUUpRoFUuCaBZHQLS54wosqax1fZQoaAZoCWgPQwhOKhprf6dGQJSGlFKUaBVLUmgWR0C0uefgm7aqdX2UKGgGaAloD0MIHqfoSG6xckCUhpRSlGgVS6FoFkdAtLns9HMEBHV9lChoBmgJaA9DCBJKXwi5j3JAlIaUUpRoFUumaBZHQLS59c/dIoV1fZQoaAZoCWgPQwjex9EcmYxyQJSGlFKUaBVLrGgWR0C0ufWIsRQKdX2UKGgGaAloD0MITZ8dcB1EckCUhpRSlGgVS71oFkdAtLoMwsXiznV9lChoBmgJaA9DCKNZ2T6kJHNAlIaUUpRoFUvjaBZHQLS6E5DJEIB1fZQoaAZoCWgPQwigVPt0fGByQJSGlFKUaBVLsmgWR0C0uhy9ytFKdX2UKGgGaAloD0MIWAIpsesccUCUhpRSlGgVS75oFkdAtLorbah6B3V9lChoBmgJaA9DCN1e0hgtf3BAlIaUUpRoFUuJaBZHQLS6P30f5k91fZQoaAZoCWgPQwiT407pIJBwQJSGlFKUaBVLpGgWR0C0ukxPXTVldX2UKGgGaAloD0MIWz/9Z81uckCUhpRSlGgVS4poFkdAtLpMWoFV1nV9lChoBmgJaA9DCMST3cxoKnNAlIaUUpRoFUu6aBZHQLS6VLidat91fZQoaAZoCWgPQwjc2OxI9YdxQJSGlFKUaBVLtGgWR0C0ulkvwmVrdX2UKGgGaAloD0MIZi0FpP3NcUCUhpRSlGgVS7RoFkdAtLpa0JF9a3V9lChoBmgJaA9DCBr35jcMO3JAlIaUUpRoFUugaBZHQLS6ckhzNll1fZQoaAZoCWgPQwjBAS1dgXpyQJSGlFKUaBVLemgWR0C0un8M3IdVdX2UKGgGaAloD0MIRKhSs0fycUCUhpRSlGgVS6VoFkdAtLp+p1ie/nV9lChoBmgJaA9DCPCGNCow7HFAlIaUUpRoFUvBaBZHQLS6gkTYdyV1fZQoaAZoCWgPQwj3Peqv13lzQJSGlFKUaBVLtmgWR0C0uoTY287IdX2UKGgGaAloD0MIA8x8B/9scUCUhpRSlGgVS4NoFkdAtLqGtp22X3V9lChoBmgJaA9DCN9vtOPGPnFAlIaUUpRoFUuzaBZHQLS6ibrTpgV1fZQoaAZoCWgPQwjGMCdoEzdxQJSGlFKUaBVLkGgWR0C0uo0euFHsdX2UKGgGaAloD0MIVAH3PD9Xc0CUhpRSlGgVS7ZoFkdAtLqSgL7XQXV9lChoBmgJaA9DCMQhG0iXgnJAlIaUUpRoFUvEaBZHQLS6leT3Zf51fZQoaAZoCWgPQwi05VyKK0tyQJSGlFKUaBVLx2gWR0C0uqHQla8pdX2UKGgGaAloD0MID5nyIWgqckCUhpRSlGgVS7poFkdAtLqsYVIqb3V9lChoBmgJaA9DCHHnwkgvAHNAlIaUUpRoFUuhaBZHQLS6tb5/LDB1fZQoaAZoCWgPQwjon+BiRf5zQJSGlFKUaBVL32gWR0C0uriZnctYdX2UKGgGaAloD0MIL6UuGYfBcECUhpRSlGgVS5poFkdAtLrGMju8b3V9lChoBmgJaA9DCChiEcNOI3JAlIaUUpRoFUuLaBZHQLS6yIwM6R11fZQoaAZoCWgPQwjrNqj9Ft9wQJSGlFKUaBVLn2gWR0C0utiMLncMdX2UKGgGaAloD0MIBkg0gWKkcUCUhpRSlGgVS5xoFkdAtLrhurIYFnV9lChoBmgJaA9DCEG2LF9XAXJAlIaUUpRoFUuJaBZHQLS66uhK15V1fZQoaAZoCWgPQwjGFoIc1FVyQJSGlFKUaBVLumgWR0C0uwZTAFgVdX2UKGgGaAloD0MIFqWEYJWEckCUhpRSlGgVS95oFkdAtLsSZSeiBXV9lChoBmgJaA9DCEbu6erOY3JAlIaUUpRoFUvOaBZHQLS7G/EOy3V1fZQoaAZoCWgPQwhaf0sA/lxyQJSGlFKUaBVLu2gWR0C0uylb7j1gdX2UKGgGaAloD0MIDFnd6rn3cECUhpRSlGgVS4xoFkdAtLss4S6DoXV9lChoBmgJaA9DCO3T8ZhB6nFAlIaUUpRoFUu/aBZHQLS7NxDst051fZQoaAZoCWgPQwiIvruVJf5DQJSGlFKUaBVLV2gWR0C0uztE9dNWdX2UKGgGaAloD0MIIPDAAMIFckCUhpRSlGgVS7NoFkdAtLs9YV6/qXV9lChoBmgJaA9DCN1hE5m5UHFAlIaUUpRoFUukaBZHQLS7Rn4O+Zh1fZQoaAZoCWgPQwjcSxqjdX5yQJSGlFKUaBVLo2gWR0C0u1LZnL7odX2UKGgGaAloD0MIvRsLCkNec0CUhpRSlGgVS7xoFkdAtLtfkZJkG3V9lChoBmgJaA9DCHlcVItI3HJAlIaUUpRoFUuxaBZHQLS7YsDGLk11fZQoaAZoCWgPQwizX3e6871wQJSGlFKUaBVLmmgWR0C0u2ha1TisdX2UKGgGaAloD0MIkKD4MWbcc0CUhpRSlGgVS6VoFkdAtLt8qWkadnV9lChoBmgJaA9DCMfzGVAvD3JAlIaUUpRoFUupaBZHQLS7f/hVENR1fZQoaAZoCWgPQwhfQgWHF250QJSGlFKUaBVLtmgWR0C0u4ebd8ArdX2UKGgGaAloD0MIqaW5FcLYcUCUhpRSlGgVS85oFkdAtLuHf642CXV9lChoBmgJaA9DCDlf7L14QXFAlIaUUpRoFUuoaBZHQLS7iTQ3PzF1fZQoaAZoCWgPQwgYk/5eiqVyQJSGlFKUaBVLrWgWR0C0u5PAGjbjdX2UKGgGaAloD0MImj474LpockCUhpRSlGgVS55oFkdAtLuTW+XZ5HV9lChoBmgJaA9DCH8zMV1I23FAlIaUUpRoFUu9aBZHQLS7o336AOJ1fZQoaAZoCWgPQwgRqP5B5OJzQJSGlFKUaBVLs2gWR0C0u6Whh6SldX2UKGgGaAloD0MI/I7hsR+WckCUhpRSlGgVS79oFkdAtLuzuWrwOXV9lChoBmgJaA9DCNXMWgrI7G5AlIaUUpRoFUucaBZHQLS7tb48EFJ1fZQoaAZoCWgPQwhxWBr4EVhxQJSGlFKUaBVLomgWR0C0u8DZ13dLdX2UKGgGaAloD0MIbhRZa6hgckCUhpRSlGgVS9VoFkdAtLvIzsQd0nV9lChoBmgJaA9DCJRqn47H2m9AlIaUUpRoFUucaBZHQLS7yMzdk8R1fZQoaAZoCWgPQwgBiSZQxBdyQJSGlFKUaBVLyGgWR0C0u9ySzPa+dX2UKGgGaAloD0MI3QcgtUmOckCUhpRSlGgVS8FoFkdAtLvfBwdbPnV9lChoBmgJaA9DCKGDLuGQgHBAlIaUUpRoFUudaBZHQLS7+EpAlfJ1fZQoaAZoCWgPQwiKWppbYThyQJSGlFKUaBVLtmgWR0C0vAOFHrhSdX2UKGgGaAloD0MIUKbR5CJkckCUhpRSlGgVS4toFkdAtLwLPomoi3V9lChoBmgJaA9DCMnlP6Sf23FAlIaUUpRoFUuUaBZHQLS8D5IH1OF1fZQoaAZoCWgPQwghByXMdKByQJSGlFKUaBVLxWgWR0C0vBFZs9B9dX2UKGgGaAloD0MIixcLQ6QLcUCUhpRSlGgVS7RoFkdAtLw+n1nM+3V9lChoBmgJaA9DCPNUh9xMTnBAlIaUUpRoFUudaBZHQLS8Q8ZDRdB1fZQoaAZoCWgPQwg6BfnZCJ1xQJSGlFKUaBVLr2gWR0C0vEinYQJ5dX2UKGgGaAloD0MIYhVvZF5Jc0CUhpRSlGgVS6poFkdAtLxMMmWt2nV9lChoBmgJaA9DCF/P1yzXAXRAlIaUUpRoFUvLaBZHQLS8TdUbT+h1fZQoaAZoCWgPQwgQdR+A1GhwQJSGlFKUaBVLoWgWR0C0vFe717IDdX2UKGgGaAloD0MIJemayfddc0CUhpRSlGgVS9loFkdAtLxtbiZOSHV9lChoBmgJaA9DCPOv5ZVr5G9AlIaUUpRoFUuYaBZHQLS8dEXLvCx1fZQoaAZoCWgPQwinzM034otxQJSGlFKUaBVLrGgWR0C0vIfio86ndX2UKGgGaAloD0MIEtvdA3TkcUCUhpRSlGgVS9hoFkdAtLyM+UyHmHV9lChoBmgJaA9DCJGb4Qb81XJAlIaUUpRoFUvEaBZHQLS8mY02tMh1fZQoaAZoCWgPQwjL94xEqJ1xQJSGlFKUaBVLsmgWR0C0vJzhLoOhdX2UKGgGaAloD0MItrsH6D57cECUhpRSlGgVS61oFkdAtLyhYV6/qXV9lChoBmgJaA9DCA+5GW6AJHJAlIaUUpRoFUu2aBZHQLS8o3Lmp2l1fZQoaAZoCWgPQwhblNkgk1xxQJSGlFKUaBVLz2gWR0C0vKVMuez2dX2UKGgGaAloD0MI1LX2PhVucUCUhpRSlGgVS7toFkdAtLy3Khcqv3V9lChoBmgJaA9DCED7kSKyJ3JAlIaUUpRoFUvNaBZHQLS8vuRs/IN1fZQoaAZoCWgPQwjTEcDN4rFxQJSGlFKUaBVLtGgWR0C0vL7oOhCddX2UKGgGaAloD0MI56ij42qVbkCUhpRSlGgVS49oFkdAtLzBLVWjoXV9lChoBmgJaA9DCGsLz0sFk3FAlIaUUpRoFUuvaBZHQLS8xcZ9/jN1fZQoaAZoCWgPQwjxK9ZwEU1zQJSGlFKUaBVLsWgWR0C0vMqo/A0sdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 1224,
79
+ "n_steps": 1024,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 128,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGMvZGF0YTEvemhlbmh1YW5fbGl1L2FuYWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGMvZGF0YTEvemhlbmh1YW5fbGl1L2FuYWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
MLP-PPO-LunarLander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66ce1fef5210920c7841762318b571a1da9c3d9d76e1ea8bf34bf9e033fcd3a8
3
+ size 87993
MLP-PPO-LunarLander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a34c7d705556f52c06b4002463a5cb6a8e066a8de4fcca2bdbbab8641cfdcfd
3
+ size 43201
MLP-PPO-LunarLander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
MLP-PPO-LunarLander/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.13.0-41-generic-x86_64-with-glibc2.17 #46~20.04.1-Ubuntu SMP Wed Apr 20 13:16:21 UTC 2022
2
+ Python: 3.8.13
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1
5
+ GPU Enabled: True
6
+ Numpy: 1.23.1
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 293.72 +/- 12.98
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7effbb3255e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7effbb325670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7effbb325700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7effbb325790>", "_build": "<function ActorCriticPolicy._build at 0x7effbb325820>", "forward": "<function ActorCriticPolicy.forward at 0x7effbb3258b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7effbb325940>", "_predict": "<function ActorCriticPolicy._predict at 0x7effbb3259d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7effbb325a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7effbb325af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7effbb325b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7effbb3a3240>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 10027008, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672849053602448474, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGMvZGF0YTEvemhlbmh1YW5fbGl1L2FuYWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGMvZGF0YTEvemhlbmh1YW5fbGl1L2FuYWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAGY0sjx7SpK6Q6cQOFY2CzMRXtC69ogntwAAgD8AAIA/wKqIPR+95bmWVyE41S6QsoqVsbuwlD23AACAPwAAgD+zhjk9PeYZu+qzBb6JQYA82fQhPA69Xr0AAIA/AACAP3Mw+b07ZIM/GFqpvoGcVb/JP1++E/XkvQAAAAAAAAAAM/fZuxeYqz+YT6C94pwGv51XAzyr/Ei9AAAAAAAAAABA1oA9xICvP+Pc0T41EZy+w8aWPNu9az0AAAAAAAAAALNbI72f4ec8iwP2Pd7tn76zrJS9K5nBPAAAAAAAAAAAGv0TPTPgnz/B3iw+3fUcvykEdD0YR8E9AAAAAAAAAAAz0gU9SKG7P97Maz6iDMW8zKANvdcCsb0AAAAAAAAAAGYAqLzhZKq6vikfvV2acbE2v3g5ZQWRswAAgD8AAIA/mrqZPCnsS7rRUDA4ydlyM59gKLtre063AACAPwAAgD8zgwc8Jm1KPyHTSTywA3O/wlzjvDzwRDwAAAAAAAAAABp/8D2U3zU/+DHqPelwUr83im4+PN2nvAAAAAAAAAAA2nUGPp/iTj82kXo+hmpfvzv6dT6nJ0c9AAAAAAAAAAAz7RS9XEsDunQUIzNPPVywvj7LOkgFpLMAAIA/AACAP7MYX71IiYu65gPtNhGZVbCdNhG7UuQHtgAAgD8AAIA/qilUviyABz8v8RA8kwcsv/Rgk76qsak7AAAAAAAAAAAzkPC9A0VYPX1ucT7m96G+c7DEvaC1QD4AAAAAAAAAAGZLhb2Vfxs+VclmPcN8B79VAaq9yKxePQAAAAAAAAAAWkyWveFIgbo0zTi3P0ecslX2WzkgeVQ2AACAPwAAgD8arFu9ZkKrP52T+7402uO+5oPQvD0aYr4AAAAAAAAAACDLNj5L4aY/EJbaPkdGHb9wazk+WmSbPgAAAAAAAAAANqh0vlXbZT5F6bA+ceMNvxIQO76Livc9AAAAAAAAAABAboc9IUpqP3RvKD48zmy/6Bu7PVMbMD4AAAAAAAAAAMBfxr1C5ec+t8NEPSXyVb9bkOm9WsOYPQAAAAAAAAAAGghoPeHso7o2gHyzEwLrLlA6GThSJrszAACAPwAAAACaJ3i9UiDDuSoHzzZx7EkyMNTKO0rH8rUAAIA/AACAP2ZCgL0wpbc/oq0Pvvq20b7edOa8JGBBvgAAAAAAAAAAjXsTvvGGAD9ALMe99/hCv9FBS742Uao7AAAAAAAAAAAmTVA+59V/PiACt76ybgi/7vvKPZXQkb4AAAAAAAAAADN3rjwoPpo/BnkTPk41Xb/A/YA97uofPgAAAAAAAAAAILISPsPJGrw+yyw7zFEmuaTHeb1rgWS6AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMItoKmJZZ0ckCUhpRSlIwBbJRLr4wBdJRHQLS5eu2Zy+91fZQoaAZoCWgPQwgGaFvN+vdyQJSGlFKUaBVLkWgWR0C0uXyQ1aW5dX2UKGgGaAloD0MIxa2CGKixckCUhpRSlGgVS8doFkdAtLl+dQO4G3V9lChoBmgJaA9DCNl5G5sdA3JAlIaUUpRoFUu8aBZHQLS5gmPo3aV1fZQoaAZoCWgPQwisONVaWLtyQJSGlFKUaBVLp2gWR0C0uZD0pVjqdX2UKGgGaAloD0MIC3xFt15jckCUhpRSlGgVS7NoFkdAtLmuO0b963V9lChoBmgJaA9DCNzXgXNGKHFAlIaUUpRoFUt/aBZHQLS5u9bHIZJ1fZQoaAZoCWgPQwheEJGa9lJmQJSGlFKUaBVN6ANoFkdAtLnAaZQYUHV9lChoBmgJaA9DCCVBuAIKfnBAlIaUUpRoFUugaBZHQLS5wtPHktF1fZQoaAZoCWgPQwg0LEZd69RxQJSGlFKUaBVLlWgWR0C0ucJUDMePdX2UKGgGaAloD0MII57sZoa5cUCUhpRSlGgVS8RoFkdAtLncAjps43V9lChoBmgJaA9DCIDXZ876anJAlIaUUpRoFUuCaBZHQLS54wosqax1fZQoaAZoCWgPQwhOKhprf6dGQJSGlFKUaBVLUmgWR0C0uefgm7aqdX2UKGgGaAloD0MIHqfoSG6xckCUhpRSlGgVS6FoFkdAtLns9HMEBHV9lChoBmgJaA9DCBJKXwi5j3JAlIaUUpRoFUumaBZHQLS59c/dIoV1fZQoaAZoCWgPQwjex9EcmYxyQJSGlFKUaBVLrGgWR0C0ufWIsRQKdX2UKGgGaAloD0MITZ8dcB1EckCUhpRSlGgVS71oFkdAtLoMwsXiznV9lChoBmgJaA9DCKNZ2T6kJHNAlIaUUpRoFUvjaBZHQLS6E5DJEIB1fZQoaAZoCWgPQwigVPt0fGByQJSGlFKUaBVLsmgWR0C0uhy9ytFKdX2UKGgGaAloD0MIWAIpsesccUCUhpRSlGgVS75oFkdAtLorbah6B3V9lChoBmgJaA9DCN1e0hgtf3BAlIaUUpRoFUuJaBZHQLS6P30f5k91fZQoaAZoCWgPQwiT407pIJBwQJSGlFKUaBVLpGgWR0C0ukxPXTVldX2UKGgGaAloD0MIWz/9Z81uckCUhpRSlGgVS4poFkdAtLpMWoFV1nV9lChoBmgJaA9DCMST3cxoKnNAlIaUUpRoFUu6aBZHQLS6VLidat91fZQoaAZoCWgPQwjc2OxI9YdxQJSGlFKUaBVLtGgWR0C0ulkvwmVrdX2UKGgGaAloD0MIZi0FpP3NcUCUhpRSlGgVS7RoFkdAtLpa0JF9a3V9lChoBmgJaA9DCBr35jcMO3JAlIaUUpRoFUugaBZHQLS6ckhzNll1fZQoaAZoCWgPQwjBAS1dgXpyQJSGlFKUaBVLemgWR0C0un8M3IdVdX2UKGgGaAloD0MIRKhSs0fycUCUhpRSlGgVS6VoFkdAtLp+p1ie/nV9lChoBmgJaA9DCPCGNCow7HFAlIaUUpRoFUvBaBZHQLS6gkTYdyV1fZQoaAZoCWgPQwj3Peqv13lzQJSGlFKUaBVLtmgWR0C0uoTY287IdX2UKGgGaAloD0MIA8x8B/9scUCUhpRSlGgVS4NoFkdAtLqGtp22X3V9lChoBmgJaA9DCN9vtOPGPnFAlIaUUpRoFUuzaBZHQLS6ibrTpgV1fZQoaAZoCWgPQwjGMCdoEzdxQJSGlFKUaBVLkGgWR0C0uo0euFHsdX2UKGgGaAloD0MIVAH3PD9Xc0CUhpRSlGgVS7ZoFkdAtLqSgL7XQXV9lChoBmgJaA9DCMQhG0iXgnJAlIaUUpRoFUvEaBZHQLS6leT3Zf51fZQoaAZoCWgPQwi05VyKK0tyQJSGlFKUaBVLx2gWR0C0uqHQla8pdX2UKGgGaAloD0MID5nyIWgqckCUhpRSlGgVS7poFkdAtLqsYVIqb3V9lChoBmgJaA9DCHHnwkgvAHNAlIaUUpRoFUuhaBZHQLS6tb5/LDB1fZQoaAZoCWgPQwjon+BiRf5zQJSGlFKUaBVL32gWR0C0uriZnctYdX2UKGgGaAloD0MIL6UuGYfBcECUhpRSlGgVS5poFkdAtLrGMju8b3V9lChoBmgJaA9DCChiEcNOI3JAlIaUUpRoFUuLaBZHQLS6yIwM6R11fZQoaAZoCWgPQwjrNqj9Ft9wQJSGlFKUaBVLn2gWR0C0utiMLncMdX2UKGgGaAloD0MIBkg0gWKkcUCUhpRSlGgVS5xoFkdAtLrhurIYFnV9lChoBmgJaA9DCEG2LF9XAXJAlIaUUpRoFUuJaBZHQLS66uhK15V1fZQoaAZoCWgPQwjGFoIc1FVyQJSGlFKUaBVLumgWR0C0uwZTAFgVdX2UKGgGaAloD0MIFqWEYJWEckCUhpRSlGgVS95oFkdAtLsSZSeiBXV9lChoBmgJaA9DCEbu6erOY3JAlIaUUpRoFUvOaBZHQLS7G/EOy3V1fZQoaAZoCWgPQwhaf0sA/lxyQJSGlFKUaBVLu2gWR0C0uylb7j1gdX2UKGgGaAloD0MIDFnd6rn3cECUhpRSlGgVS4xoFkdAtLss4S6DoXV9lChoBmgJaA9DCO3T8ZhB6nFAlIaUUpRoFUu/aBZHQLS7NxDst051fZQoaAZoCWgPQwiIvruVJf5DQJSGlFKUaBVLV2gWR0C0uztE9dNWdX2UKGgGaAloD0MIIPDAAMIFckCUhpRSlGgVS7NoFkdAtLs9YV6/qXV9lChoBmgJaA9DCN1hE5m5UHFAlIaUUpRoFUukaBZHQLS7Rn4O+Zh1fZQoaAZoCWgPQwjcSxqjdX5yQJSGlFKUaBVLo2gWR0C0u1LZnL7odX2UKGgGaAloD0MIvRsLCkNec0CUhpRSlGgVS7xoFkdAtLtfkZJkG3V9lChoBmgJaA9DCHlcVItI3HJAlIaUUpRoFUuxaBZHQLS7YsDGLk11fZQoaAZoCWgPQwizX3e6871wQJSGlFKUaBVLmmgWR0C0u2ha1TisdX2UKGgGaAloD0MIkKD4MWbcc0CUhpRSlGgVS6VoFkdAtLt8qWkadnV9lChoBmgJaA9DCMfzGVAvD3JAlIaUUpRoFUupaBZHQLS7f/hVENR1fZQoaAZoCWgPQwhfQgWHF250QJSGlFKUaBVLtmgWR0C0u4ebd8ArdX2UKGgGaAloD0MIqaW5FcLYcUCUhpRSlGgVS85oFkdAtLuHf642CXV9lChoBmgJaA9DCDlf7L14QXFAlIaUUpRoFUuoaBZHQLS7iTQ3PzF1fZQoaAZoCWgPQwgYk/5eiqVyQJSGlFKUaBVLrWgWR0C0u5PAGjbjdX2UKGgGaAloD0MImj474LpockCUhpRSlGgVS55oFkdAtLuTW+XZ5HV9lChoBmgJaA9DCH8zMV1I23FAlIaUUpRoFUu9aBZHQLS7o336AOJ1fZQoaAZoCWgPQwgRqP5B5OJzQJSGlFKUaBVLs2gWR0C0u6Whh6SldX2UKGgGaAloD0MI/I7hsR+WckCUhpRSlGgVS79oFkdAtLuzuWrwOXV9lChoBmgJaA9DCNXMWgrI7G5AlIaUUpRoFUucaBZHQLS7tb48EFJ1fZQoaAZoCWgPQwhxWBr4EVhxQJSGlFKUaBVLomgWR0C0u8DZ13dLdX2UKGgGaAloD0MIbhRZa6hgckCUhpRSlGgVS9VoFkdAtLvIzsQd0nV9lChoBmgJaA9DCJRqn47H2m9AlIaUUpRoFUucaBZHQLS7yMzdk8R1fZQoaAZoCWgPQwgBiSZQxBdyQJSGlFKUaBVLyGgWR0C0u9ySzPa+dX2UKGgGaAloD0MI3QcgtUmOckCUhpRSlGgVS8FoFkdAtLvfBwdbPnV9lChoBmgJaA9DCKGDLuGQgHBAlIaUUpRoFUudaBZHQLS7+EpAlfJ1fZQoaAZoCWgPQwiKWppbYThyQJSGlFKUaBVLtmgWR0C0vAOFHrhSdX2UKGgGaAloD0MIUKbR5CJkckCUhpRSlGgVS4toFkdAtLwLPomoi3V9lChoBmgJaA9DCMnlP6Sf23FAlIaUUpRoFUuUaBZHQLS8D5IH1OF1fZQoaAZoCWgPQwghByXMdKByQJSGlFKUaBVLxWgWR0C0vBFZs9B9dX2UKGgGaAloD0MIixcLQ6QLcUCUhpRSlGgVS7RoFkdAtLw+n1nM+3V9lChoBmgJaA9DCPNUh9xMTnBAlIaUUpRoFUudaBZHQLS8Q8ZDRdB1fZQoaAZoCWgPQwg6BfnZCJ1xQJSGlFKUaBVLr2gWR0C0vEinYQJ5dX2UKGgGaAloD0MIYhVvZF5Jc0CUhpRSlGgVS6poFkdAtLxMMmWt2nV9lChoBmgJaA9DCF/P1yzXAXRAlIaUUpRoFUvLaBZHQLS8TdUbT+h1fZQoaAZoCWgPQwgQdR+A1GhwQJSGlFKUaBVLoWgWR0C0vFe717IDdX2UKGgGaAloD0MIJemayfddc0CUhpRSlGgVS9loFkdAtLxtbiZOSHV9lChoBmgJaA9DCPOv5ZVr5G9AlIaUUpRoFUuYaBZHQLS8dEXLvCx1fZQoaAZoCWgPQwinzM034otxQJSGlFKUaBVLrGgWR0C0vIfio86ndX2UKGgGaAloD0MIEtvdA3TkcUCUhpRSlGgVS9hoFkdAtLyM+UyHmHV9lChoBmgJaA9DCJGb4Qb81XJAlIaUUpRoFUvEaBZHQLS8mY02tMh1fZQoaAZoCWgPQwjL94xEqJ1xQJSGlFKUaBVLsmgWR0C0vJzhLoOhdX2UKGgGaAloD0MItrsH6D57cECUhpRSlGgVS61oFkdAtLyhYV6/qXV9lChoBmgJaA9DCA+5GW6AJHJAlIaUUpRoFUu2aBZHQLS8o3Lmp2l1fZQoaAZoCWgPQwhblNkgk1xxQJSGlFKUaBVLz2gWR0C0vKVMuez2dX2UKGgGaAloD0MI1LX2PhVucUCUhpRSlGgVS7toFkdAtLy3Khcqv3V9lChoBmgJaA9DCED7kSKyJ3JAlIaUUpRoFUvNaBZHQLS8vuRs/IN1fZQoaAZoCWgPQwjTEcDN4rFxQJSGlFKUaBVLtGgWR0C0vL7oOhCddX2UKGgGaAloD0MI56ij42qVbkCUhpRSlGgVS49oFkdAtLzBLVWjoXV9lChoBmgJaA9DCGsLz0sFk3FAlIaUUpRoFUuvaBZHQLS8xcZ9/jN1fZQoaAZoCWgPQwjxK9ZwEU1zQJSGlFKUaBVLsWgWR0C0vMqo/A0sdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1224, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGMvZGF0YTEvemhlbmh1YW5fbGl1L2FuYWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGMvZGF0YTEvemhlbmh1YW5fbGl1L2FuYWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.13.0-41-generic-x86_64-with-glibc2.17 #46~20.04.1-Ubuntu SMP Wed Apr 20 13:16:21 UTC 2022", "Python": "3.8.13", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1", "GPU Enabled": "True", "Numpy": "1.23.1", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (192 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 293.71539266095306, "std_reward": 12.982835133714977, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-04T23:00:24.369076"}