--- language: vi datasets: - cc100 tags: - summarization license: mit --- # ViT5-large Finetuned on `vietnews` Abstractive Summarization State-of-the-art pre-trained Transformer-based encoder-decoder model for Vietnamese. ## How to use For more details, do check out [our Github repo](https://github.com/justinphan3110/ViT5). ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM ​ tokenizer = AutoTokenizer.from_pretrained("VietAI/vit5-large-vietnews-summarization") model = AutoModelForSeq2SeqLM.from_pretrained("VietAI/vit5-large-vietnews-summarization") ​ sentence = "Xin chào" text = "summarize: " + sentence + " " encoding = tokenizer.encode_plus(text, pad_to_max_length=True, return_tensors="pt") input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda") outputs = model.generate( input_ids=input_ids, attention_mask=attention_masks, max_length=256, early_stopping=True ) for output in outputs: line = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True) print(line) ``` ## Citation ``` Coming Soon... ```