# Vietnamese Llama-30b with LoRA Adapters This repository contains a Vietnamese Llama-30b model fine-tuned with QLoRA (Quantization Low-Rank Adapter) adapters. The adapter is a plug-and-play tool that enables the LLaMa model to perform well in many Vietnamese NLP tasks. Project Github page: [Github](https://github.com/VietnamAIHub/Vietnamese_LLMs) ## Model Overview The Vietnamese Llama-30B model is a large language model capable of generating meaningful text and can be used in a wide variety of natural language processing tasks, including text generation, sentiment analysis, and more. By using LoRA adapters, the model achieves better performance on low-resource tasks and demonstrates improved generalization. ## Dataset and Fine-Tuning The LLaMa model was fine-tuned on over 200K instructions from various sources to improve its ability to understand and generate text for different tasks. The instruction dataset comprises data from the following sources: Dataset is Coming Soon ## Loading the Model To load the fine-tuned Vietnamese Llama-30b model with LoRA adapters, follow the code snippet below: ```python import torch from transformers import AutoModelForCausalLM, LlamaTokenizer device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_name = "VietnamAIHub/Vietnamese_SFT_llama_30B_v1" cache_dir="/save_weight_path" ## Loading Base LLaMa model weight and Merge with Adapter Weight wiht the base model m = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, device_map={"cuda": 0}, cache_dir=cache_dir ) ## Save model to specific path tok = LlamaTokenizer.from_pretrained(model_name, cache_dir=cache_dir) ## Loading Unified Model Again after Merging the Weight tok.bos_token_id = 1 generation_config = dict( temperature=0.2, top_k=20, top_p=0.9, do_sample=True, num_beams=1, repetition_penalty=1.2, max_new_tokens=400, early_stopping=True, ) prompt="Cách để học tập về một môn học thật tốt" _DEFAULT_TEMPLATE=f"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### prompt:\n{prompt}\n\n### response:\n" inputs = tok(message,return_tensors="pt") #add_special_tokens=False ? generation_output = m.generate( input_ids = inputs["input_ids"].to(device), attention_mask = inputs['attention_mask'].to(device), eos_token_id=tok.eos_token_id, pad_token_id=tok.pad_token_id, **generation_config ) generation_output_ = m.generate(input_ids = inputs["input_ids"].to(device), **generation_config) s = generation_output[0] output = tok.decode(s,skip_special_tokens=True) response = output.split("### response:")[1].strip() print(respone) ``` ## Conclusion The Llama-30b with LoRA adapters is a versatile language model that can be utilized for a wide range of NLP tasks in Vietnamese. We hope that researchers and developers find this model useful and are encouraged to experiment with it in their projects. For any questions, feedback, or contributions, please feel free to contact the maintainers of this repository TranNhiem 🙌: [Linkedin](https://www.linkedin.com/in/tran-nhiem-ab1851125/) [Twitter](https://twitter.com/TranRick2) [Facebook](https://www.facebook.com/jean.tran.336). Happy fine-tuning and experimenting with the Llama-30b model!