Safetensors
English
Russian
mistral
File size: 19,545 Bytes
c8febca
 
a16509b
 
 
 
 
 
 
 
 
cb61267
a16509b
 
 
 
 
c379393
a16509b
c379393
a16509b
2c039aa
a16509b
 
0a74edd
a16509b
 
c379393
a16509b
 
 
0c8897a
3791712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
507d8bc
3791712
 
 
f6a13ea
 
507d8bc
 
2c039aa
 
 
 
507d8bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c039aa
507d8bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3791712
a16509b
 
507d8bc
 
c379393
507d8bc
2c039aa
507d8bc
 
 
 
 
 
c379393
507d8bc
 
 
 
ed927b2
0c8897a
a16509b
 
0a74edd
 
2ca1209
 
 
 
 
 
 
 
 
 
 
0a74edd
 
2c039aa
 
0a74edd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c379393
0a74edd
c379393
0a74edd
 
 
 
 
 
 
 
 
 
6abd887
0a74edd
a16509b
0c8897a
 
6abd887
0c8897a
a16509b
 
0a74edd
 
0707cf6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
---
license: apache-2.0
datasets:
- Vikhrmodels/GrandMaster-PRO-MAX
- Vikhrmodels/Grounded-RAG-RU-v2
language:
- en
- ru
base_model:
- mistralai/Mistral-Nemo-Instruct-2407
---
[Reame.md in English](Readme_en.md)

## Vikhr-Nemo-12B-Instruct-R-21-09-24

### Описание

**Vikhr-Nemo** - это наша флагманская унимодальная LLM (Large Language Model) представляющая из себя улучшенную версию [mistralai/Mistral-Nemo-Instruct-2407](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407) командой **VikhrModels**, адаптированную преимущественно для русского и английского языков. Для ее обучения мы использовали несколько этапов включающих в себя **SFT** и **SMPO** - нашу собственную вариацию DPO, подробнее читайте в секции *"Как эта модель создавалась"*.

Модель оптимизированна для различных вариантов использования, включая ризонинг, суммаризацию, код, roleplay, поддержание диалога. Vikhr-Nemo обладает возможностью многоязычной генерации, и высокопроизводительными возможностями RAG. Модель иммет лучшие оценки среди прочих на наших инструктивных и RAG бенчарках и, поэтому, мы верим, что в некоторых задачах (например, RAG) может быть не хуже gpt-4o-mini от OpenAI.

Весь использованный код для обучения доступен в нашем репозитории [effective_llm_alignment](https://github.com/VikhrModels/effective_llm_alignment/) на GitHub, а основные датасеты доступны в нашем [профиле на HF](https://huggingface.co/Vikhrmodels).

### Особенности
1. Высокое качество генераций на русском и английском языках, а также некоторых других языках, благодаря датасету [Grandmaster-PRO-MAX](https://huggingface.co/datasets/Vikhrmodels/GrandMaster-PRO-MAX) и исходной модели
2. Поддержка системных промптов для регулриования стиля ответов
3. Поддержка до 128k токенов контекста благодаря исходной модели
4. Grounded RAG режим - модель имеет специальную роль documents и специальный режим работы для поиска идентификаторов релевантных вопросу пользователя документов и использования их для ответа на вопрос, вдохновлено аналогичной способностью модели Command-R

### Метрики и оценка качества

Модель оценивалась на нашем русскоязычном open-source SbS бенчмарке [ru-arena-general](https://github.com/VikhrModels/ru_llm_arena) (50 топиков по 10 вопросов), где судьей выступает gpt-4-1106-preview и [бенчмарке](https://colab.research.google.com/drive/16730rWQ4-yGqWoooLs0Ece_16frmOniP?usp=sharing) для RAG на основе тестового сета [Grounded-RAG-v2](https://huggingface.co/datasets/Vikhrmodels/Grounded-RAG-RU-v2), где судей выступа gpt-4o.

#### Результаты на Ru-Arena-General

В качестве референсых отвеов, с которыми сравниваются модели выступают ответы от gpt-3.5-turbo-0125, поэтому она имеет винрейт 50%.

Здесь приведена лишь часть лидерборда, подробнее смотрите в репозитории бенчмарка.

| Model Name                                       | Winrate  | 95% CI             | Average # Tokens |
|--------------------------------------------------|--------|--------------------|------------------|
| gpt-4-1106-preview                               | 90.9   | (-1.3, 1.0)        | 541              |
| gpt-4o-mini                                      | 83.9   | (-1.8, 1.1)        | 448              |
| **vikhr-nemo-12b-instruct-r-21-09-24**               | **79.8**   | (-2.2, 1.9)        | **627**              |
| gemma-2-9b-it-sppo-iter3                         | 73.6   | (-1.6, 2.2)        | 509              |
| gemma-2-9b-it                                    | 69.2   | (-2.5, 1.9)        | 459              |
| t-lite-instruct-0.1                              | 64.7   | (-2.1, 1.7)        | 810              |
| vikhr-llama3.1-8b-instruct-r-21-09-24            | 63.4   | (-2.1, 2.5)        | 618              |
| suzume-llama-3-8B-multilingual-orpo-borda-half   | 57.1   | (-1.9, 2.2)        | 682              |
| mistral-nemo-instruct-2407                       | 50.5   | (-2.7, 2.6)        | 403              |
| gpt-3.5-turbo-0125                               | 50.0   | (0.0, 0.0)         | 220              |
| c4ai-command-r-v01                               | 49.0   | (-1.7, 2.2)        | 529              |
| meta-llama-3.1-8b-instruct                       | 43.1   | (-2.8, 2.3)        | 628              |

#### Результаты на бенчмарке RAG

Общий размер тестового сета - 200 примеров, 100 для in_domain вопросов и 100 для out_of_domain.

Тут для оценки качества модель-судья gpt-4o была проинструктирована учитывать релеватность и фактологичкскую полноту ответов исходя из документов и реферсного ответа от gpt-4-1106-preview.

Подробности промптов и оценок смотрите в коде бенчмарка на [коллабе](https://colab.research.google.com/drive/16730rWQ4-yGqWoooLs0Ece_16frmOniP?usp=sharing)

in_domain - вопросы которые связаны с содержанием предоставленных документов в той или иной степени \
out_of_domain - вопросы которые специально никак не связаны с содержанием предоставленных документов

<table>
<thead>
  <tr>
    <th rowspan="2">question_type</th>
    <th colspan="3">gpt-4o</th>
  </tr>
  <tr>
    <th>judge_correct_percent</th>
    <th>avg_answer_match_rougeL</th>
    <th>avg_abs_indexes_diff</th>
  </tr>
</thead>
<tbody>
  <tr>
    <td>in_domain</td>
    <td>73%</td>
    <td>0.34</td>
    <td>NaN</td>
  </tr>
  <tr>
    <td>out_of_domain</td>
    <td>81%</td>
    <td>0.20</td>
    <td>NaN</td>
  </tr>
</tbody>
</table>

<table>
<thead>
  <tr>
    <th style="visibility: hidden;" rowspan="2">question_type</th>
    <th colspan="3">Vikhr-Nemo-12B-Instruct-R-21-09-24</th>
  </tr>
  <tr>
    <th style="visibility: hidden;">judge_correct_percent</th>
    <th style="visibility: hidden;">avg_answer_match_rougeL</th>
    <th style="visibility: hidden;">avg_abs_indexes_diff</th>
  </tr>
</thead>
<tbody>
  <tr>
    <td>in_domain</td>
    <td>68%</td>
    <td>0.41</td>
    <td>0</td>
  </tr>
  <tr>
    <td>out_of_domain</td>
    <td>92%</td>
    <td>0.52</td>
    <td>0</td>
  </tr>
</tbody>
</table>

<table>
<thead>
  <tr>
    <th style="visibility: hidden;" rowspan="2">question_type</th>
    <th colspan="3">gpt-4o-mini</th>
  </tr>
  <tr>
    <th style="visibility: hidden;">judge_correct_percent</th>
    <th style="visibility: hidden;">avg_answer_match_rougeL</th>
    <th style="visibility: hidden;">avg_abs_indexes_diff</th>
  </tr>
</thead>
<tbody>
  <tr>
    <td>in_domain</td>
    <td>65%</td>
    <td>0.33</td>
    <td>NaN</td>
  </tr>
  <tr>
    <td>out_of_domain</td>
    <td>73%</td>
    <td>0.18</td>
    <td>NaN</td>
  </tr>
</tbody>
</table>

<table>
<thead>
  <tr>
    <th style="visibility: hidden;" rowspan="2">question_type</th>
    <th colspan="3">gpt-3.5-turbo-0125 </th>
  </tr>
  <tr>
    <th style="visibility: hidden;">judge_correct_percent</th>
    <th style="visibility: hidden;">avg_answer_match_rougeL</th>
    <th style="visibility: hidden;">avg_abs_indexes_diff</th>
  </tr>
</thead>
<tbody>
  <tr>
    <td>in_domain</td>
    <td>49%</td>
    <td>0.28</td>
    <td>NaN</td>
  </tr>
  <tr>
    <td>out_of_domain</td>
    <td>76%</td>
    <td>0.20</td>
    <td>NaN</td>
  </tr>
</tbody>
</table>

### Как эта модель создавалась

#### Инструктивная SFT часть

Для SFT этапа обучения модели мы подготовили большой (150к инструкций) инструктивный синтетический датасет [Vikhrmodels/GrandMaster-PRO-MAX](https://huggingface.co/datasets/Vikhrmodels/GrandMaster-PRO-MAX). Его особенностью является встроеный CoT (Chain-Of-Thought), для сбора которого мы использовали модифицированный промет для gpt-4-turbo, подробности в карточке датасета.

Кроме того, для того чтобы сделать RAG Grounding, мы подготовили другой синтетический датасет - [Vikhrmodels/Grounded-RAG-RU-v2](https://huggingface.co/datasets/Vikhrmodels/Grounded-RAG-RU-v2) (50k диалогов), его пайплайн сборки достаточно сложный для короткого описания и полробнее об этом вы можете прочитать в его карточке.

#### Этап алайнмента с SMPO

Для дальнейшего улучшения качества ответов мы использовали следущий пайплайн:
1) Обучили кастомную Reward модель (она пока не будет выкладываться в открытый доступ)
2) Дедуплицировали и отфилтровали используя RM модель оригинальный датасет Vikhrmodels/GrandMaster-PRO-MAX, получив порядка 10к самых высококачественных и разнообразных диалогов.
3) Сделали Rejection Sampling с SFT чекпоинтом используя полученный датасет и Reward модель. (Генерировали 7 гипотез и брали только 2 самые худшие как rejected)
4) Дообучили SFT чекпоинт с помощью нашего метода SMPO используя полученный датасет из этапа 3. SMPO был спроектирован и выбран как метод для повышения стабильности тренировки преференсов в условиях Rejection Samping и достижения нужного margin.

Реализацию SMPO, rejection sampling и тд можно найти в нашей библиотеке [effective_llm_alignment](https://github.com/VikhrModels/effective_llm_alignment/) на GitHub

Идея использования именно SMPO, а не другого PO метода, возникла в результате проведения большого количества экспериментов с классическими методами, при необходимости лучшего контроля процесса сходимости. При тщательной настройке других методов (например SimPO), можно добится похожего результата, однако мы постарались стаблизировать этот процесс и объединить лучшие практики из других методов.

### Как работать с RAG

Роль documents представляет из себя список словарей с описанием контента документов, с примнением `json.dumps(array, ensure_ascii=False)` (см. пример ниже). \
Контент документов может быть представлен в **3** различных форматах: **Markdown**, **HTML**, **Plain Text**. Контент каждого документа - может быть чанком текста длиной до 4к символов.

```json
[
  {
    "doc_id": (0..5),
    "title": "(null or str)",
    "content": "(html or markdown or plain text)"
  }
]
```

#### Пример правильного использования с OpenAI-like API

Запуск vLLM сервера: `vllm serve --dtype half --max-model-len 32000 -tp 1 Vikhrmodels/Vikhr-Nemo-12B-Instruct-R-21-09-24 --api-key token-abc123`

```python
GROUNDED_SYSTEM_PROMPT = "Your task is to answer the user's questions using only the information from the provided documents. Give two answers to each question: one with a list of relevant document identifiers and the second with the answer to the question itself, using documents with these identifiers."

documents = [
  {
    "doc_id": 0,
    "title": "Глобальное потепление: ледники",
    "content": "За последние 50 лет объем ледников в мире уменьшился на 30%"
  },
  {
    "doc_id": 1,
    "title": "Глобальное потепление: Уровень моря",
    "content": "Уровень мирового океана повысился на 20 см с 1880 года и продолжает расти на 3,3 мм в год"
  }
]
sample_history = [
    {'role': 'system', 'content': GROUNDED_SYSTEM_PROMPT}, 
    {'role': 'documents', 'content': json.dumps(documents, ensure_ascii=False)},
    {'role': 'user', 'content': 'Глоабльное потепление'}
]
relevant_indexes = llm_client.chat.completions.create(
    model=llm_model,
    messages=sample_history,
    temperature=0.0,
    max_tokens=2048
).choices[0].message.content

print('Using documents: ' + relevant_indexes + '\n----')
final_answer = llm_client.chat.completions.create(
    model=llm_model,
    messages=sample_history + [{'role': 'assistant', 'content': relevant_indexes}],
    temperature=0.3,
    max_tokens=2048
).choices[0].message.content

print(final_answer)
```

Ответ после выполнения кода будет выглядеть примерно так:

    Using documents: {"relevant_doc_ids": [0, 1]}
    ----

    Глобальное потепление – это долгосрочное повышение средней температуры атмосферы и океанов Земли. Это явление имеет множество последствий для нашей планеты, и среди них можно выделить два ключевых аспекта, основанных на доступных мне данных:
    
    1. **Уменьшение объема ледников**: За последние 50 лет наблюдается значительное сокращение объема ледников по всему миру. Согласно данным, объем ледников уменьшился на 30%. Это может быть связано с таянием ледников из-за повышения температур, что является одним из признаков глобального потепления.
    
    2. **Повышение уровня моря**: Уровень мирового океана также увеличивается, что связано с таянием ледников и ледяных покровов, а также с расширением воды при повышении температуры. С 1880 года уровень моря повысился на 20 сантиметров, и этот процесс продолжается, с ежегодным увеличением на 3,3 миллиметра.
    
    Эти изменения имеют серьезные последствия для экосистем, климата и человеческого общества. Таяние ледников приводит к повышению уровня моря, что может привести к затоплению прибрежных территорий и островов, а также к изменению водных ресурсов и климатических паттернов.

Используя первый ответ модели `relevant_indexes` (JSON), можно понять нашла ли модель информацию в документах или нет, она обучена возврашать пустой массив если ее нет и в таком случае она будет отвечать, что не смогла найти информацию в базе знаний (при генерации второго ответа).

### Нюансы и ограничения
- Модель имеет **низкий уровень безопасности ответов** и нацелена на правильное и полное выполенние инструкций, имейте это ввиду при использовании и тестируйте самостоятельно. Частично это исправляется системными промптами и дополнительными указаниями о важности безопасности в промпте пользователя.
- Системные промпты не предназначены для описание персонажей, мы рекомендуем использовать их для спецификации стиля ответа (вроде "answer only in json format"). Кроме того, желательно, писать их **на английском языке**, так как так было в датасете, от использования английского в системных промтпах не зависит язык ответа.
- RAG режим **требует обязательного** наличия системного промпта `GROUNDED_SYSTEM_PROMPT` описаного в секции *Как работать с RAG*. Так же иногда модель может добавлять общую информацию из своих знаний в ответ к той, что есть в документах.
- Модель лучше использовать с низкой темптературой (0.1-0.5), а таже использовать top_k (30-50), при температуре 1.0 были замечены случайные дефекты генерации.

### Авторы 
- Sergei Bratchikov, [NLP Wanderer](https://t.me/nlpwanderer), Vikhr Team
- Konstantin Korolev, Vikhr Team
- Aleksandr Nikolich, Vikhr Team