File size: 15,570 Bytes
5d41715
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ec5d10eb910>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ec5d10e3880>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 200000, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690667519483295057, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAqDCmPm9X9Dsjsgg/qDCmPm9X9Dsjsgg/qDCmPm9X9Dsjsgg/qDCmPm9X9Dsjsgg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAq4S0v0r6oL4kdG2/oILvPFg/hz99wwu+UL2UvwGPJ73zELs/AGVGv805/z6/cLa/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACoMKY+b1f0OyOyCD/vvDq8Oxwous810TuoMKY+b1f0OyOyCD/vvDq8Oxwous810TuoMKY+b1f0OyOyCD/vvDq8Oxwous810TuoMKY+b1f0OyOyCD/vvDq8Oxwous810TuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.32458997 0.00745671 0.53396815]\n [0.32458997 0.00745671 0.53396815]\n [0.32458997 0.00745671 0.53396815]\n [0.32458997 0.00745671 0.53396815]]", "desired_goal": "[[-1.4102987  -0.31440955 -0.9275534 ]\n [ 0.02923709  1.0566206  -0.13648792]\n [-1.1620274  -0.04090786  1.4614547 ]\n [-0.77497864  0.49848786 -1.4253157 ]]", "observation": "[[ 0.32458997  0.00745671  0.53396815 -0.01139758 -0.00064129  0.00638459]\n [ 0.32458997  0.00745671  0.53396815 -0.01139758 -0.00064129  0.00638459]\n [ 0.32458997  0.00745671  0.53396815 -0.01139758 -0.00064129  0.00638459]\n [ 0.32458997  0.00745671  0.53396815 -0.01139758 -0.00064129  0.00638459]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8aPBvdE22D22Be89oBiUvJ2d27wa00c9xS7yvZ8wQb1jGEA7mhYDPiz9/z3m6OM9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]", "desired_goal": "[[-0.09455097  0.1055733   0.11671011]\n [-0.01807815 -0.02680855  0.04878531]\n [-0.11825327 -0.04716551  0.00293114]\n [ 0.1280159   0.12499461  0.11128406]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIstmR6js/97+UhpRSlIwBbJRLMowBdJRHQIOWfOlfqot1fZQoaAZoCWgPQwgIA8+9h0v3v5SGlFKUaBVLMmgWR0CDlKbfgrH3dX2UKGgGaAloD0MI6svSTs3l77+UhpRSlGgVSzJoFkdAg5KQEIPbwnV9lChoBmgJaA9DCM45eCY0Sfe/lIaUUpRoFUsyaBZHQIOQhVsDW9V1fZQoaAZoCWgPQwj/A6xVu+b0v5SGlFKUaBVLMmgWR0CDmxLRKHwgdX2UKGgGaAloD0MITIv6JHcY97+UhpRSlGgVSzJoFkdAg5k81Gb1AnV9lChoBmgJaA9DCE4NNJ9z9/G/lIaUUpRoFUsyaBZHQIOXJnSOR1Z1fZQoaAZoCWgPQwgc0T3rGq30v5SGlFKUaBVLMmgWR0CDlRsdDIBBdX2UKGgGaAloD0MIEcZP497897+UhpRSlGgVSzJoFkdAg59xWT5ft3V9lChoBmgJaA9DCIKMgApHEPa/lIaUUpRoFUsyaBZHQIOdm+PBBRh1fZQoaAZoCWgPQwi1wB4TKY38v5SGlFKUaBVLMmgWR0CDm4VymygPdX2UKGgGaAloD0MITuyhfawg8L+UhpRSlGgVSzJoFkdAg5l6Zpi7TXV9lChoBmgJaA9DCLLV5ZSAWPa/lIaUUpRoFUsyaBZHQIOkEhV2icp1fZQoaAZoCWgPQwgVqwZhbvf1v5SGlFKUaBVLMmgWR0CDojuAI6bOdX2UKGgGaAloD0MInN1aJsOx+7+UhpRSlGgVSzJoFkdAg6Ak1l5GBnV9lChoBmgJaA9DCEfGavP/qvO/lIaUUpRoFUsyaBZHQIOeGT9sJpp1fZQoaAZoCWgPQwhFKSFYVa/0v5SGlFKUaBVLMmgWR0CDqE0uUUwjdX2UKGgGaAloD0MIgQcGED7U97+UhpRSlGgVSzJoFkdAg6Z5zxPO6nV9lChoBmgJaA9DCN+KxAQ1fPO/lIaUUpRoFUsyaBZHQIOkYczZYgd1fZQoaAZoCWgPQwjeO2pMiPn1v5SGlFKUaBVLMmgWR0CDolZQpF1CdX2UKGgGaAloD0MImmA41zDD+L+UhpRSlGgVSzJoFkdAg6zTZpSJj3V9lChoBmgJaA9DCME5I0p7g/S/lIaUUpRoFUsyaBZHQIOq/PRiPQx1fZQoaAZoCWgPQwiaXmIs02/wv5SGlFKUaBVLMmgWR0CDqOU7jkuIdX2UKGgGaAloD0MIxQJf0a0X97+UhpRSlGgVSzJoFkdAg6baLOzIFXV9lChoBmgJaA9DCOfkRSbgV/K/lIaUUpRoFUsyaBZHQIOxSoCMglp1fZQoaAZoCWgPQwiOIQA49qzzv5SGlFKUaBVLMmgWR0CDr3epGWledX2UKGgGaAloD0MIZ3v0hvuI87+UhpRSlGgVSzJoFkdAg61g1WKdhHV9lChoBmgJaA9DCJRQ+kLIOfO/lIaUUpRoFUsyaBZHQIOrVwrDqGF1fZQoaAZoCWgPQwir0EAsmzn1v5SGlFKUaBVLMmgWR0CDtbWRRuTBdX2UKGgGaAloD0MIxK9Yw0Xu9L+UhpRSlGgVSzJoFkdAg7Pe4smOVHV9lChoBmgJaA9DCELPZtXnKve/lIaUUpRoFUsyaBZHQIOxyCBf8dh1fZQoaAZoCWgPQwhiTtAmhw/4v5SGlFKUaBVLMmgWR0CDr7xdY4hmdX2UKGgGaAloD0MIlSwnofTF+b+UhpRSlGgVSzJoFkdAg7pGsV+I/XV9lChoBmgJaA9DCDvD1JY6SPm/lIaUUpRoFUsyaBZHQIO4cYbbUPR1fZQoaAZoCWgPQwj3AN2XM9v1v5SGlFKUaBVLMmgWR0CDtln5i3G5dX2UKGgGaAloD0MILbRzmgXa9r+UhpRSlGgVSzJoFkdAg7RRNh3JP3V9lChoBmgJaA9DCIdPOpFgKve/lIaUUpRoFUsyaBZHQIO+tpZfUnZ1fZQoaAZoCWgPQwjdQIF38qn0v5SGlFKUaBVLMmgWR0CDvOABkqc3dX2UKGgGaAloD0MIDtyBOuVR8b+UhpRSlGgVSzJoFkdAg7rH2ZiNKnV9lChoBmgJaA9DCMC0qE9yx/a/lIaUUpRoFUsyaBZHQIO4vbEgntx1fZQoaAZoCWgPQwhdTgmISfjwv5SGlFKUaBVLMmgWR0CDw4Hj6vaDdX2UKGgGaAloD0MIzeUGQx0W9r+UhpRSlGgVSzJoFkdAg8GsUh3aBnV9lChoBmgJaA9DCJmghm9h3fG/lIaUUpRoFUsyaBZHQIO/lxn3+Mt1fZQoaAZoCWgPQwiUF5mAX2Pzv5SGlFKUaBVLMmgWR0CDvYt9x6v8dX2UKGgGaAloD0MI4UBIFjAB+r+UhpRSlGgVSzJoFkdAg8gbW3BpH3V9lChoBmgJaA9DCFrVko5yMO+/lIaUUpRoFUsyaBZHQIPGRj+aScN1fZQoaAZoCWgPQwhh/DTuzW/yv5SGlFKUaBVLMmgWR0CDxC7YkE9udX2UKGgGaAloD0MIh+C4jJsa8b+UhpRSlGgVSzJoFkdAg8IjPv8ZUHV9lChoBmgJaA9DCEq3JXLBmfS/lIaUUpRoFUsyaBZHQIPMjzXjENx1fZQoaAZoCWgPQwj8471qZUL1v5SGlFKUaBVLMmgWR0CDyriEQGwBdX2UKGgGaAloD0MIXHNH/8t1+L+UhpRSlGgVSzJoFkdAg8ig08/2TXV9lChoBmgJaA9DCCU9DK1ODvq/lIaUUpRoFUsyaBZHQIPGlabF0gd1fZQoaAZoCWgPQwgUzQNY5Bfxv5SGlFKUaBVLMmgWR0CD0OB3iaRZdX2UKGgGaAloD0MIRnh7EAIy9r+UhpRSlGgVSzJoFkdAg88K5TZQHnV9lChoBmgJaA9DCLQDritmxPG/lIaUUpRoFUsyaBZHQIPM9aIN3GJ1fZQoaAZoCWgPQwgD0ZMyqSHyv5SGlFKUaBVLMmgWR0CDyuwoLG70dX2UKGgGaAloD0MIuk24V+at9r+UhpRSlGgVSzJoFkdAg9UiHymQ83V9lChoBmgJaA9DCC7lfLH3ovG/lIaUUpRoFUsyaBZHQIPTSzJIUah1fZQoaAZoCWgPQwgIWRZM/JH6v5SGlFKUaBVLMmgWR0CD0TLAYYR/dX2UKGgGaAloD0MIJ6JfWz/9+b+UhpRSlGgVSzJoFkdAg88nb7CSBHV9lChoBmgJaA9DCD9uv3yyYvW/lIaUUpRoFUsyaBZHQIPZnKOktVd1fZQoaAZoCWgPQwjvb9BefTz1v5SGlFKUaBVLMmgWR0CD18asIVuadX2UKGgGaAloD0MIQxuADYhQ8b+UhpRSlGgVSzJoFkdAg9WvA44p+nV9lChoBmgJaA9DCLuX++QogPW/lIaUUpRoFUsyaBZHQIPTo6EJ0GN1fZQoaAZoCWgPQwj2RUJbzqXzv5SGlFKUaBVLMmgWR0CD4Lp7kXDWdX2UKGgGaAloD0MI+RBUjV7N9b+UhpRSlGgVSzJoFkdAg97mxUvPC3V9lChoBmgJaA9DCCridJKtLvS/lIaUUpRoFUsyaBZHQIPc014xDb91fZQoaAZoCWgPQwizs+idCnj2v5SGlFKUaBVLMmgWR0CD2ssg+yJLdX2UKGgGaAloD0MISfJc34cD/L+UhpRSlGgVSzJoFkdAg+epo0ygw3V9lChoBmgJaA9DCGMLQQ5KGPe/lIaUUpRoFUsyaBZHQIPl1ZvDP4V1fZQoaAZoCWgPQwi6EKs/wrDxv5SGlFKUaBVLMmgWR0CD48CmMwUQdX2UKGgGaAloD0MIN2+cFOZ9+L+UhpRSlGgVSzJoFkdAg+G6m4y44XV9lChoBmgJaA9DCIv/O6JCNfS/lIaUUpRoFUsyaBZHQIPu7Ak9lmR1fZQoaAZoCWgPQwh+HM2Rld/1v5SGlFKUaBVLMmgWR0CD7RiZv1lHdX2UKGgGaAloD0MIMXkDzHyH9L+UhpRSlGgVSzJoFkdAg+sF0YCQtHV9lChoBmgJaA9DCFqhSPdzyvW/lIaUUpRoFUsyaBZHQIPo/LeQ+2V1fZQoaAZoCWgPQwipTgeynlrxv5SGlFKUaBVLMmgWR0CD9oDlHSWrdX2UKGgGaAloD0MI3IKluoDX9L+UhpRSlGgVSzJoFkdAg/SugQHzH3V9lChoBmgJaA9DCG6GG/D5ofe/lIaUUpRoFUsyaBZHQIPynIyTINp1fZQoaAZoCWgPQwhTdY9srtr3v5SGlFKUaBVLMmgWR0CD8JYT0xubdX2UKGgGaAloD0MIsi/ZeLBF9L+UhpRSlGgVSzJoFkdAg/0tOM2m53V9lChoBmgJaA9DCCDtf4C16vW/lIaUUpRoFUsyaBZHQIP7Wff4yoJ1fZQoaAZoCWgPQwho6Qq2EY/1v5SGlFKUaBVLMmgWR0CD+USsbNr1dX2UKGgGaAloD0MIm+jzUUZc+r+UhpRSlGgVSzJoFkdAg/c9WyTpxHV9lChoBmgJaA9DCLiSHRuBePS/lIaUUpRoFUsyaBZHQIQBmXzDn/11fZQoaAZoCWgPQwjjUpW2uAb1v5SGlFKUaBVLMmgWR0CD/8PFvQ4TdX2UKGgGaAloD0MIp+z0g7pI87+UhpRSlGgVSzJoFkdAg/2rxy4nW3V9lChoBmgJaA9DCH3sLlBSYPK/lIaUUpRoFUsyaBZHQIP7ofMfRu11fZQoaAZoCWgPQwgYfQVpxuL3v5SGlFKUaBVLMmgWR0CEBkv5gw49dX2UKGgGaAloD0MIL4mzImqi8L+UhpRSlGgVSzJoFkdAhAR21D0Dl3V9lChoBmgJaA9DCC/4NCcvcva/lIaUUpRoFUsyaBZHQIQCX3cpLEl1fZQoaAZoCWgPQwiiKTv9oG7zv5SGlFKUaBVLMmgWR0CEAFOnEVFhdX2UKGgGaAloD0MIN6eSAaBK87+UhpRSlGgVSzJoFkdAhAq+aBqbjXV9lChoBmgJaA9DCOCgvfp4aPa/lIaUUpRoFUsyaBZHQIQI6Uu+RHR1fZQoaAZoCWgPQwjqzhPP2UL1v5SGlFKUaBVLMmgWR0CEBtEZR8+idX2UKGgGaAloD0MIeXQjLCri7r+UhpRSlGgVSzJoFkdAhATHNHH3lHV9lChoBmgJaA9DCA+0AkNWN/K/lIaUUpRoFUsyaBZHQIQPWKQ7tAt1fZQoaAZoCWgPQwhOJm4VxID0v5SGlFKUaBVLMmgWR0CEDYIgvDgqdX2UKGgGaAloD0MI24r9Zfck87+UhpRSlGgVSzJoFkdAhAtqNAC4jXV9lChoBmgJaA9DCHi5iO/E7Pi/lIaUUpRoFUsyaBZHQIQJXmcOLBN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 10000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True  True  True]", "bounded_above": "[ True  True  True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}