--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.89 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5167 - Accuracy: 0.89 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2163 | 1.0 | 113 | 2.0720 | 0.34 | | 1.7237 | 2.0 | 226 | 1.5361 | 0.59 | | 1.3254 | 3.0 | 339 | 1.2044 | 0.65 | | 1.0757 | 4.0 | 452 | 1.0578 | 0.66 | | 1.0683 | 5.0 | 565 | 0.8947 | 0.78 | | 0.9307 | 6.0 | 678 | 0.7716 | 0.82 | | 1.0313 | 7.0 | 791 | 0.7210 | 0.82 | | 0.6988 | 8.0 | 904 | 0.6506 | 0.8 | | 0.8053 | 9.0 | 1017 | 0.5944 | 0.81 | | 0.6243 | 10.0 | 1130 | 0.5637 | 0.87 | | 0.6238 | 11.0 | 1243 | 0.5212 | 0.89 | | 0.4493 | 12.0 | 1356 | 0.5167 | 0.89 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3