File size: 1,868 Bytes
f985db8
 
 
 
 
 
324715f
f985db8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
language:
- zh
license: apache-2.0
tags:
- generated_from_trainer
base_model: openai/whisper-tiny
datasets:
- mozilla-foundation/common_voice_16_1
model-index:
- name: Whisper Tiny chinese - VingeNie
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Tiny chinese - VingeNie

This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 16.1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7976
- Cer Ortho: 35.9855
- Cer: 29.9636

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 25
- training_steps: 1500
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Cer Ortho | Cer     |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:|
| 0.8364        | 1.0   | 300  | 0.8423          | 44.8697   | 32.3523 |
| 0.5618        | 2.0   | 600  | 0.7816          | 44.3497   | 31.3998 |
| 0.3559        | 3.0   | 900  | 0.7747          | 41.4869   | 30.1052 |
| 0.2016        | 4.0   | 1200 | 0.7828          | 37.2903   | 30.2107 |
| 0.0953        | 5.0   | 1500 | 0.7976          | 35.9855   | 29.9636 |


### Framework versions

- Transformers 4.40.1
- Pytorch 2.0.1+cu118
- Datasets 2.19.0
- Tokenizers 0.19.1