VishalD1234
commited on
Commit
•
4183ac5
1
Parent(s):
28421c3
Update handler.py
Browse files- handler.py +70 -39
handler.py
CHANGED
@@ -1,48 +1,79 @@
|
|
1 |
-
from typing import Dict, List, Any
|
2 |
-
from PIL import Image
|
3 |
import torch
|
4 |
-
import
|
|
|
|
|
|
|
5 |
from io import BytesIO
|
6 |
-
from transformers import BlipForConditionalGeneration, BlipProcessor
|
7 |
-
# -
|
8 |
-
|
9 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
self.model =
|
17 |
-
|
18 |
-
).to(device)
|
19 |
-
self.model.eval()
|
20 |
-
self.model = self.model.to(device)
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
"""
|
|
|
|
|
26 |
Args:
|
27 |
-
data
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
"""
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
raw_images = [Image.open(BytesIO(_img)) for _img in inputs]
|
37 |
-
|
38 |
-
processed_image = self.processor(images=raw_images, return_tensors="pt")
|
39 |
-
processed_image["pixel_values"] = processed_image["pixel_values"].to(device)
|
40 |
-
processed_image = {**processed_image, **parameters}
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
+
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
|
3 |
+
from PIL import Image
|
4 |
+
import json
|
5 |
+
import base64
|
6 |
from io import BytesIO
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
# Load the model and feature extractor when the handler is initialized
|
9 |
+
class VisionModelHandler:
|
10 |
+
def __init__(self, model_name_or_path="https://huggingface.co/VishalD1234/Florence-metere1"):
|
11 |
+
self.model_name_or_path = model_name_or_path
|
12 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
|
14 |
+
# Load model and feature extractor
|
15 |
+
self.model = AutoModelForImageClassification.from_pretrained(self.model_name_or_path)
|
16 |
+
self.feature_extractor = AutoFeatureExtractor.from_pretrained(self.model_name_or_path)
|
|
|
|
|
|
|
17 |
|
18 |
+
# Move the model to the appropriate device (GPU/CPU)
|
19 |
+
self.model.to(self.device)
|
20 |
+
self.model.eval() # Set model to evaluation mode
|
21 |
+
|
22 |
+
def preprocess_image(self, image_data):
|
23 |
+
"""
|
24 |
+
Preprocess the image for the model. Convert it from base64 and apply the necessary transformations.
|
25 |
+
"""
|
26 |
+
image = Image.open(BytesIO(base64.b64decode(image_data)))
|
27 |
+
inputs = self.feature_extractor(images=image, return_tensors="pt").to(self.device)
|
28 |
+
return inputs
|
29 |
+
|
30 |
+
def predict(self, inputs):
|
31 |
+
"""
|
32 |
+
Perform inference and return the model's predictions.
|
33 |
+
"""
|
34 |
+
with torch.no_grad():
|
35 |
+
outputs = self.model(**inputs)
|
36 |
+
logits = outputs.logits
|
37 |
+
predicted_class_idx = logits.argmax(-1).item() # Get the index of the highest score
|
38 |
+
return predicted_class_idx
|
39 |
+
|
40 |
+
def handle(self, event, context):
|
41 |
"""
|
42 |
+
Entry point for the inference request. This will be called by the inference endpoint.
|
43 |
+
|
44 |
Args:
|
45 |
+
event: This will contain the input data, usually in the form of a JSON with an image in base64.
|
46 |
+
context: Optional, can contain metadata about the request (not used here).
|
47 |
+
|
48 |
+
Returns:
|
49 |
+
A JSON response with the prediction result.
|
50 |
"""
|
51 |
+
# Extract image data from the request body
|
52 |
+
body = json.loads(event.get("body", "{}"))
|
53 |
+
image_data = body.get("image_base64", None)
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
if image_data is None:
|
56 |
+
return {
|
57 |
+
"statusCode": 400,
|
58 |
+
"body": json.dumps({"error": "No image data found in the request"})
|
59 |
+
}
|
60 |
+
|
61 |
+
# Preprocess the image and make predictions
|
62 |
+
inputs = self.preprocess_image(image_data)
|
63 |
+
prediction = self.predict(inputs)
|
64 |
+
|
65 |
+
# You can add more details to this mapping depending on your use case
|
66 |
+
response = {
|
67 |
+
"statusCode": 200,
|
68 |
+
"body": json.dumps({"prediction": prediction})
|
69 |
+
}
|
70 |
+
|
71 |
+
return response
|
72 |
+
|
73 |
+
|
74 |
+
# Instantiate the handler
|
75 |
+
vision_model_handler = VisionModelHandler()
|
76 |
+
|
77 |
+
# If running in an environment like AWS Lambda or Sagemaker, ensure this is exposed
|
78 |
+
def lambda_handler(event, context):
|
79 |
+
return vision_model_handler.handle(event, context)
|