Vivek-huggingface commited on
Commit
167de2e
1 Parent(s): 11e6a51

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
.summary/0/events.out.tfevents.1726414432.49d3274c343a ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67120ee05b4af9cd2a3e96139d9f3ada1cfd25287ddd7a48feb39a9d20c830ab
3
+ size 223143
README.md ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sample-factory
3
+ tags:
4
+ - deep-reinforcement-learning
5
+ - reinforcement-learning
6
+ - sample-factory
7
+ model-index:
8
+ - name: APPO
9
+ results:
10
+ - task:
11
+ type: reinforcement-learning
12
+ name: reinforcement-learning
13
+ dataset:
14
+ name: doom_health_gathering_supreme
15
+ type: doom_health_gathering_supreme
16
+ metrics:
17
+ - type: mean_reward
18
+ value: 6.05 +/- 2.60
19
+ name: mean_reward
20
+ verified: false
21
+ ---
22
+
23
+ A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
24
+
25
+ This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
26
+ Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
27
+
28
+
29
+ ## Downloading the model
30
+
31
+ After installing Sample-Factory, download the model with:
32
+ ```
33
+ python -m sample_factory.huggingface.load_from_hub -r Vivek-huggingface/rl_course_vizdoom_health_gathering_supreme
34
+ ```
35
+
36
+
37
+ ## Using the model
38
+
39
+ To run the model after download, use the `enjoy` script corresponding to this environment:
40
+ ```
41
+ python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
42
+ ```
43
+
44
+
45
+ You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
46
+ See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
47
+
48
+ ## Training with this model
49
+
50
+ To continue training with this model, use the `train` script corresponding to this environment:
51
+ ```
52
+ python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
53
+ ```
54
+
55
+ Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
56
+
checkpoint_p0/best_000000932_3817472_reward_7.084.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:749e55fef00b37d162017e0ed5a3eb2c42d2c16f3fb78df4608e8198c8040db3
3
+ size 34929051
checkpoint_p0/checkpoint_000000976_3997696.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9681c5fb6925d00ba66825b89cb336baf292a837aa8fb20361ac2674c4950fce
3
+ size 34929541
checkpoint_p0/checkpoint_000000978_4005888.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69d62f07d27427f768cc06f1f621baa9933f31dc0ccdf01867af3aa645a6c1e8
3
+ size 34929541
config.json ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "help": false,
3
+ "algo": "APPO",
4
+ "env": "doom_health_gathering_supreme",
5
+ "experiment": "default_experiment",
6
+ "train_dir": "/content/train_dir",
7
+ "restart_behavior": "resume",
8
+ "device": "gpu",
9
+ "seed": null,
10
+ "num_policies": 1,
11
+ "async_rl": true,
12
+ "serial_mode": false,
13
+ "batched_sampling": false,
14
+ "num_batches_to_accumulate": 2,
15
+ "worker_num_splits": 2,
16
+ "policy_workers_per_policy": 1,
17
+ "max_policy_lag": 1000,
18
+ "num_workers": 8,
19
+ "num_envs_per_worker": 4,
20
+ "batch_size": 1024,
21
+ "num_batches_per_epoch": 1,
22
+ "num_epochs": 1,
23
+ "rollout": 32,
24
+ "recurrence": 32,
25
+ "shuffle_minibatches": false,
26
+ "gamma": 0.99,
27
+ "reward_scale": 1.0,
28
+ "reward_clip": 1000.0,
29
+ "value_bootstrap": false,
30
+ "normalize_returns": true,
31
+ "exploration_loss_coeff": 0.001,
32
+ "value_loss_coeff": 0.5,
33
+ "kl_loss_coeff": 0.0,
34
+ "exploration_loss": "symmetric_kl",
35
+ "gae_lambda": 0.95,
36
+ "ppo_clip_ratio": 0.1,
37
+ "ppo_clip_value": 0.2,
38
+ "with_vtrace": false,
39
+ "vtrace_rho": 1.0,
40
+ "vtrace_c": 1.0,
41
+ "optimizer": "adam",
42
+ "adam_eps": 1e-06,
43
+ "adam_beta1": 0.9,
44
+ "adam_beta2": 0.999,
45
+ "max_grad_norm": 4.0,
46
+ "learning_rate": 0.0001,
47
+ "lr_schedule": "constant",
48
+ "lr_schedule_kl_threshold": 0.008,
49
+ "lr_adaptive_min": 1e-06,
50
+ "lr_adaptive_max": 0.01,
51
+ "obs_subtract_mean": 0.0,
52
+ "obs_scale": 255.0,
53
+ "normalize_input": true,
54
+ "normalize_input_keys": null,
55
+ "decorrelate_experience_max_seconds": 0,
56
+ "decorrelate_envs_on_one_worker": true,
57
+ "actor_worker_gpus": [],
58
+ "set_workers_cpu_affinity": true,
59
+ "force_envs_single_thread": false,
60
+ "default_niceness": 0,
61
+ "log_to_file": true,
62
+ "experiment_summaries_interval": 10,
63
+ "flush_summaries_interval": 30,
64
+ "stats_avg": 100,
65
+ "summaries_use_frameskip": true,
66
+ "heartbeat_interval": 20,
67
+ "heartbeat_reporting_interval": 600,
68
+ "train_for_env_steps": 4000000,
69
+ "train_for_seconds": 10000000000,
70
+ "save_every_sec": 120,
71
+ "keep_checkpoints": 2,
72
+ "load_checkpoint_kind": "latest",
73
+ "save_milestones_sec": -1,
74
+ "save_best_every_sec": 5,
75
+ "save_best_metric": "reward",
76
+ "save_best_after": 100000,
77
+ "benchmark": false,
78
+ "encoder_mlp_layers": [
79
+ 512,
80
+ 512
81
+ ],
82
+ "encoder_conv_architecture": "convnet_simple",
83
+ "encoder_conv_mlp_layers": [
84
+ 512
85
+ ],
86
+ "use_rnn": true,
87
+ "rnn_size": 512,
88
+ "rnn_type": "gru",
89
+ "rnn_num_layers": 1,
90
+ "decoder_mlp_layers": [],
91
+ "nonlinearity": "elu",
92
+ "policy_initialization": "orthogonal",
93
+ "policy_init_gain": 1.0,
94
+ "actor_critic_share_weights": true,
95
+ "adaptive_stddev": true,
96
+ "continuous_tanh_scale": 0.0,
97
+ "initial_stddev": 1.0,
98
+ "use_env_info_cache": false,
99
+ "env_gpu_actions": false,
100
+ "env_gpu_observations": true,
101
+ "env_frameskip": 4,
102
+ "env_framestack": 1,
103
+ "pixel_format": "CHW",
104
+ "use_record_episode_statistics": false,
105
+ "with_wandb": false,
106
+ "wandb_user": null,
107
+ "wandb_project": "sample_factory",
108
+ "wandb_group": null,
109
+ "wandb_job_type": "SF",
110
+ "wandb_tags": [],
111
+ "with_pbt": false,
112
+ "pbt_mix_policies_in_one_env": true,
113
+ "pbt_period_env_steps": 5000000,
114
+ "pbt_start_mutation": 20000000,
115
+ "pbt_replace_fraction": 0.3,
116
+ "pbt_mutation_rate": 0.15,
117
+ "pbt_replace_reward_gap": 0.1,
118
+ "pbt_replace_reward_gap_absolute": 1e-06,
119
+ "pbt_optimize_gamma": false,
120
+ "pbt_target_objective": "true_objective",
121
+ "pbt_perturb_min": 1.1,
122
+ "pbt_perturb_max": 1.5,
123
+ "num_agents": -1,
124
+ "num_humans": 0,
125
+ "num_bots": -1,
126
+ "start_bot_difficulty": null,
127
+ "timelimit": null,
128
+ "res_w": 128,
129
+ "res_h": 72,
130
+ "wide_aspect_ratio": false,
131
+ "eval_env_frameskip": 1,
132
+ "fps": 35,
133
+ "command_line": "--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000",
134
+ "cli_args": {
135
+ "env": "doom_health_gathering_supreme",
136
+ "num_workers": 8,
137
+ "num_envs_per_worker": 4,
138
+ "train_for_env_steps": 4000000
139
+ },
140
+ "git_hash": "unknown",
141
+ "git_repo_name": "not a git repository"
142
+ }
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:910ae076c99657c6fcbb0ccbd44cf8d1bba812acf4958d5b8b9e89fbef2b677e
3
+ size 9568434
sf_log.txt ADDED
@@ -0,0 +1,619 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2024-09-15 15:33:57,678][00283] Saving configuration to /content/train_dir/default_experiment/config.json...
2
+ [2024-09-15 15:33:57,680][00283] Rollout worker 0 uses device cpu
3
+ [2024-09-15 15:33:57,681][00283] Rollout worker 1 uses device cpu
4
+ [2024-09-15 15:33:57,683][00283] Rollout worker 2 uses device cpu
5
+ [2024-09-15 15:33:57,684][00283] Rollout worker 3 uses device cpu
6
+ [2024-09-15 15:33:57,686][00283] Rollout worker 4 uses device cpu
7
+ [2024-09-15 15:33:57,687][00283] Rollout worker 5 uses device cpu
8
+ [2024-09-15 15:33:57,689][00283] Rollout worker 6 uses device cpu
9
+ [2024-09-15 15:33:57,690][00283] Rollout worker 7 uses device cpu
10
+ [2024-09-15 15:33:57,816][00283] Using GPUs [0] for process 0 (actually maps to GPUs [0])
11
+ [2024-09-15 15:33:57,817][00283] InferenceWorker_p0-w0: min num requests: 2
12
+ [2024-09-15 15:33:57,849][00283] Starting all processes...
13
+ [2024-09-15 15:33:57,850][00283] Starting process learner_proc0
14
+ [2024-09-15 15:33:58,582][00283] Starting all processes...
15
+ [2024-09-15 15:33:58,587][00283] Starting process inference_proc0-0
16
+ [2024-09-15 15:33:58,588][00283] Starting process rollout_proc0
17
+ [2024-09-15 15:33:58,588][00283] Starting process rollout_proc1
18
+ [2024-09-15 15:33:58,589][00283] Starting process rollout_proc2
19
+ [2024-09-15 15:33:58,590][00283] Starting process rollout_proc3
20
+ [2024-09-15 15:33:58,602][00283] Starting process rollout_proc4
21
+ [2024-09-15 15:33:58,605][00283] Starting process rollout_proc5
22
+ [2024-09-15 15:33:58,606][00283] Starting process rollout_proc6
23
+ [2024-09-15 15:33:58,607][00283] Starting process rollout_proc7
24
+ [2024-09-15 15:34:00,971][00927] Worker 6 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
25
+ [2024-09-15 15:34:01,283][00924] Worker 3 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
26
+ [2024-09-15 15:34:01,380][00922] Worker 2 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
27
+ [2024-09-15 15:34:01,482][00920] Using GPUs [0] for process 0 (actually maps to GPUs [0])
28
+ [2024-09-15 15:34:01,482][00920] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
29
+ [2024-09-15 15:34:01,497][00920] Num visible devices: 1
30
+ [2024-09-15 15:34:01,497][00905] Using GPUs [0] for process 0 (actually maps to GPUs [0])
31
+ [2024-09-15 15:34:01,497][00905] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
32
+ [2024-09-15 15:34:01,515][00905] Num visible devices: 1
33
+ [2024-09-15 15:34:01,516][00925] Worker 5 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
34
+ [2024-09-15 15:34:01,539][00905] Starting seed is not provided
35
+ [2024-09-15 15:34:01,540][00905] Using GPUs [0] for process 0 (actually maps to GPUs [0])
36
+ [2024-09-15 15:34:01,540][00905] Initializing actor-critic model on device cuda:0
37
+ [2024-09-15 15:34:01,540][00905] RunningMeanStd input shape: (3, 72, 128)
38
+ [2024-09-15 15:34:01,544][00905] RunningMeanStd input shape: (1,)
39
+ [2024-09-15 15:34:01,565][00905] ConvEncoder: input_channels=3
40
+ [2024-09-15 15:34:01,604][00919] Worker 0 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
41
+ [2024-09-15 15:34:01,649][00923] Worker 4 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
42
+ [2024-09-15 15:34:01,649][00921] Worker 1 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
43
+ [2024-09-15 15:34:01,682][00926] Worker 7 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
44
+ [2024-09-15 15:34:01,850][00905] Conv encoder output size: 512
45
+ [2024-09-15 15:34:01,851][00905] Policy head output size: 512
46
+ [2024-09-15 15:34:01,915][00905] Created Actor Critic model with architecture:
47
+ [2024-09-15 15:34:01,915][00905] ActorCriticSharedWeights(
48
+ (obs_normalizer): ObservationNormalizer(
49
+ (running_mean_std): RunningMeanStdDictInPlace(
50
+ (running_mean_std): ModuleDict(
51
+ (obs): RunningMeanStdInPlace()
52
+ )
53
+ )
54
+ )
55
+ (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
56
+ (encoder): VizdoomEncoder(
57
+ (basic_encoder): ConvEncoder(
58
+ (enc): RecursiveScriptModule(
59
+ original_name=ConvEncoderImpl
60
+ (conv_head): RecursiveScriptModule(
61
+ original_name=Sequential
62
+ (0): RecursiveScriptModule(original_name=Conv2d)
63
+ (1): RecursiveScriptModule(original_name=ELU)
64
+ (2): RecursiveScriptModule(original_name=Conv2d)
65
+ (3): RecursiveScriptModule(original_name=ELU)
66
+ (4): RecursiveScriptModule(original_name=Conv2d)
67
+ (5): RecursiveScriptModule(original_name=ELU)
68
+ )
69
+ (mlp_layers): RecursiveScriptModule(
70
+ original_name=Sequential
71
+ (0): RecursiveScriptModule(original_name=Linear)
72
+ (1): RecursiveScriptModule(original_name=ELU)
73
+ )
74
+ )
75
+ )
76
+ )
77
+ (core): ModelCoreRNN(
78
+ (core): GRU(512, 512)
79
+ )
80
+ (decoder): MlpDecoder(
81
+ (mlp): Identity()
82
+ )
83
+ (critic_linear): Linear(in_features=512, out_features=1, bias=True)
84
+ (action_parameterization): ActionParameterizationDefault(
85
+ (distribution_linear): Linear(in_features=512, out_features=5, bias=True)
86
+ )
87
+ )
88
+ [2024-09-15 15:34:02,226][00905] Using optimizer <class 'torch.optim.adam.Adam'>
89
+ [2024-09-15 15:34:02,893][00905] No checkpoints found
90
+ [2024-09-15 15:34:02,893][00905] Did not load from checkpoint, starting from scratch!
91
+ [2024-09-15 15:34:02,893][00905] Initialized policy 0 weights for model version 0
92
+ [2024-09-15 15:34:02,898][00905] LearnerWorker_p0 finished initialization!
93
+ [2024-09-15 15:34:02,898][00905] Using GPUs [0] for process 0 (actually maps to GPUs [0])
94
+ [2024-09-15 15:34:02,973][00920] RunningMeanStd input shape: (3, 72, 128)
95
+ [2024-09-15 15:34:02,974][00920] RunningMeanStd input shape: (1,)
96
+ [2024-09-15 15:34:02,986][00920] ConvEncoder: input_channels=3
97
+ [2024-09-15 15:34:03,094][00920] Conv encoder output size: 512
98
+ [2024-09-15 15:34:03,094][00920] Policy head output size: 512
99
+ [2024-09-15 15:34:03,147][00283] Inference worker 0-0 is ready!
100
+ [2024-09-15 15:34:03,149][00283] All inference workers are ready! Signal rollout workers to start!
101
+ [2024-09-15 15:34:03,181][00919] Doom resolution: 160x120, resize resolution: (128, 72)
102
+ [2024-09-15 15:34:03,181][00926] Doom resolution: 160x120, resize resolution: (128, 72)
103
+ [2024-09-15 15:34:03,182][00921] Doom resolution: 160x120, resize resolution: (128, 72)
104
+ [2024-09-15 15:34:03,182][00922] Doom resolution: 160x120, resize resolution: (128, 72)
105
+ [2024-09-15 15:34:03,201][00925] Doom resolution: 160x120, resize resolution: (128, 72)
106
+ [2024-09-15 15:34:03,201][00927] Doom resolution: 160x120, resize resolution: (128, 72)
107
+ [2024-09-15 15:34:03,202][00923] Doom resolution: 160x120, resize resolution: (128, 72)
108
+ [2024-09-15 15:34:03,202][00924] Doom resolution: 160x120, resize resolution: (128, 72)
109
+ [2024-09-15 15:34:03,610][00925] Decorrelating experience for 0 frames...
110
+ [2024-09-15 15:34:03,610][00921] Decorrelating experience for 0 frames...
111
+ [2024-09-15 15:34:03,610][00924] Decorrelating experience for 0 frames...
112
+ [2024-09-15 15:34:03,610][00922] Decorrelating experience for 0 frames...
113
+ [2024-09-15 15:34:03,610][00926] Decorrelating experience for 0 frames...
114
+ [2024-09-15 15:34:03,879][00922] Decorrelating experience for 32 frames...
115
+ [2024-09-15 15:34:03,879][00925] Decorrelating experience for 32 frames...
116
+ [2024-09-15 15:34:03,881][00923] Decorrelating experience for 0 frames...
117
+ [2024-09-15 15:34:03,881][00924] Decorrelating experience for 32 frames...
118
+ [2024-09-15 15:34:03,886][00926] Decorrelating experience for 32 frames...
119
+ [2024-09-15 15:34:03,989][00927] Decorrelating experience for 0 frames...
120
+ [2024-09-15 15:34:03,995][00921] Decorrelating experience for 32 frames...
121
+ [2024-09-15 15:34:04,123][00923] Decorrelating experience for 32 frames...
122
+ [2024-09-15 15:34:04,203][00924] Decorrelating experience for 64 frames...
123
+ [2024-09-15 15:34:04,235][00925] Decorrelating experience for 64 frames...
124
+ [2024-09-15 15:34:04,241][00927] Decorrelating experience for 32 frames...
125
+ [2024-09-15 15:34:04,242][00922] Decorrelating experience for 64 frames...
126
+ [2024-09-15 15:34:04,347][00921] Decorrelating experience for 64 frames...
127
+ [2024-09-15 15:34:04,453][00926] Decorrelating experience for 64 frames...
128
+ [2024-09-15 15:34:04,497][00923] Decorrelating experience for 64 frames...
129
+ [2024-09-15 15:34:04,509][00924] Decorrelating experience for 96 frames...
130
+ [2024-09-15 15:34:04,548][00922] Decorrelating experience for 96 frames...
131
+ [2024-09-15 15:34:04,551][00925] Decorrelating experience for 96 frames...
132
+ [2024-09-15 15:34:04,653][00921] Decorrelating experience for 96 frames...
133
+ [2024-09-15 15:34:04,749][00927] Decorrelating experience for 64 frames...
134
+ [2024-09-15 15:34:04,762][00926] Decorrelating experience for 96 frames...
135
+ [2024-09-15 15:34:04,941][00923] Decorrelating experience for 96 frames...
136
+ [2024-09-15 15:34:05,025][00927] Decorrelating experience for 96 frames...
137
+ [2024-09-15 15:34:07,213][00905] Signal inference workers to stop experience collection...
138
+ [2024-09-15 15:34:07,218][00920] InferenceWorker_p0-w0: stopping experience collection
139
+ [2024-09-15 15:34:07,575][00283] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 32. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
140
+ [2024-09-15 15:34:07,576][00283] Avg episode reward: [(0, '2.837')]
141
+ [2024-09-15 15:34:10,276][00905] Signal inference workers to resume experience collection...
142
+ [2024-09-15 15:34:10,276][00920] InferenceWorker_p0-w0: resuming experience collection
143
+ [2024-09-15 15:34:12,406][00920] Updated weights for policy 0, policy_version 10 (0.0149)
144
+ [2024-09-15 15:34:12,575][00283] Fps is (10 sec: 8191.8, 60 sec: 8191.8, 300 sec: 8191.8). Total num frames: 40960. Throughput: 0: 1940.4. Samples: 9734. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
145
+ [2024-09-15 15:34:12,578][00283] Avg episode reward: [(0, '4.224')]
146
+ [2024-09-15 15:34:14,647][00920] Updated weights for policy 0, policy_version 20 (0.0013)
147
+ [2024-09-15 15:34:16,934][00920] Updated weights for policy 0, policy_version 30 (0.0013)
148
+ [2024-09-15 15:34:17,575][00283] Fps is (10 sec: 13107.2, 60 sec: 13107.2, 300 sec: 13107.2). Total num frames: 131072. Throughput: 0: 2320.8. Samples: 23240. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
149
+ [2024-09-15 15:34:17,578][00283] Avg episode reward: [(0, '4.536')]
150
+ [2024-09-15 15:34:17,598][00905] Saving new best policy, reward=4.536!
151
+ [2024-09-15 15:34:17,807][00283] Heartbeat connected on Batcher_0
152
+ [2024-09-15 15:34:17,819][00283] Heartbeat connected on LearnerWorker_p0
153
+ [2024-09-15 15:34:17,823][00283] Heartbeat connected on InferenceWorker_p0-w0
154
+ [2024-09-15 15:34:17,829][00283] Heartbeat connected on RolloutWorker_w1
155
+ [2024-09-15 15:34:17,832][00283] Heartbeat connected on RolloutWorker_w2
156
+ [2024-09-15 15:34:17,835][00283] Heartbeat connected on RolloutWorker_w3
157
+ [2024-09-15 15:34:17,838][00283] Heartbeat connected on RolloutWorker_w4
158
+ [2024-09-15 15:34:17,841][00283] Heartbeat connected on RolloutWorker_w5
159
+ [2024-09-15 15:34:17,847][00283] Heartbeat connected on RolloutWorker_w6
160
+ [2024-09-15 15:34:17,849][00283] Heartbeat connected on RolloutWorker_w7
161
+ [2024-09-15 15:34:19,189][00920] Updated weights for policy 0, policy_version 40 (0.0013)
162
+ [2024-09-15 15:34:21,477][00920] Updated weights for policy 0, policy_version 50 (0.0013)
163
+ [2024-09-15 15:34:22,575][00283] Fps is (10 sec: 18022.3, 60 sec: 14745.4, 300 sec: 14745.4). Total num frames: 221184. Throughput: 0: 3365.6. Samples: 50516. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
164
+ [2024-09-15 15:34:22,578][00283] Avg episode reward: [(0, '4.429')]
165
+ [2024-09-15 15:34:23,765][00920] Updated weights for policy 0, policy_version 60 (0.0013)
166
+ [2024-09-15 15:34:26,039][00920] Updated weights for policy 0, policy_version 70 (0.0012)
167
+ [2024-09-15 15:34:27,575][00283] Fps is (10 sec: 18022.4, 60 sec: 15564.8, 300 sec: 15564.8). Total num frames: 311296. Throughput: 0: 3863.1. Samples: 77294. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
168
+ [2024-09-15 15:34:27,577][00283] Avg episode reward: [(0, '4.266')]
169
+ [2024-09-15 15:34:28,301][00920] Updated weights for policy 0, policy_version 80 (0.0012)
170
+ [2024-09-15 15:34:30,530][00920] Updated weights for policy 0, policy_version 90 (0.0013)
171
+ [2024-09-15 15:34:32,575][00283] Fps is (10 sec: 18022.4, 60 sec: 16056.2, 300 sec: 16056.2). Total num frames: 401408. Throughput: 0: 3637.3. Samples: 90966. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
172
+ [2024-09-15 15:34:32,578][00283] Avg episode reward: [(0, '4.535')]
173
+ [2024-09-15 15:34:32,822][00920] Updated weights for policy 0, policy_version 100 (0.0012)
174
+ [2024-09-15 15:34:35,134][00920] Updated weights for policy 0, policy_version 110 (0.0012)
175
+ [2024-09-15 15:34:37,510][00920] Updated weights for policy 0, policy_version 120 (0.0012)
176
+ [2024-09-15 15:34:37,575][00283] Fps is (10 sec: 18022.4, 60 sec: 16384.0, 300 sec: 16384.0). Total num frames: 491520. Throughput: 0: 3920.3. Samples: 117642. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
177
+ [2024-09-15 15:34:37,577][00283] Avg episode reward: [(0, '4.584')]
178
+ [2024-09-15 15:34:37,579][00905] Saving new best policy, reward=4.584!
179
+ [2024-09-15 15:34:39,800][00920] Updated weights for policy 0, policy_version 130 (0.0013)
180
+ [2024-09-15 15:34:42,005][00920] Updated weights for policy 0, policy_version 140 (0.0012)
181
+ [2024-09-15 15:34:42,575][00283] Fps is (10 sec: 18022.6, 60 sec: 16618.0, 300 sec: 16618.0). Total num frames: 581632. Throughput: 0: 4126.6. Samples: 144462. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
182
+ [2024-09-15 15:34:42,578][00283] Avg episode reward: [(0, '4.717')]
183
+ [2024-09-15 15:34:42,585][00905] Saving new best policy, reward=4.717!
184
+ [2024-09-15 15:34:44,311][00920] Updated weights for policy 0, policy_version 150 (0.0012)
185
+ [2024-09-15 15:34:46,504][00920] Updated weights for policy 0, policy_version 160 (0.0012)
186
+ [2024-09-15 15:34:47,575][00283] Fps is (10 sec: 18022.3, 60 sec: 16793.6, 300 sec: 16793.6). Total num frames: 671744. Throughput: 0: 3951.4. Samples: 158088. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
187
+ [2024-09-15 15:34:47,577][00283] Avg episode reward: [(0, '4.565')]
188
+ [2024-09-15 15:34:48,821][00920] Updated weights for policy 0, policy_version 170 (0.0012)
189
+ [2024-09-15 15:34:51,101][00920] Updated weights for policy 0, policy_version 180 (0.0013)
190
+ [2024-09-15 15:34:52,575][00283] Fps is (10 sec: 18022.4, 60 sec: 16930.1, 300 sec: 16930.1). Total num frames: 761856. Throughput: 0: 4111.9. Samples: 185068. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
191
+ [2024-09-15 15:34:52,577][00283] Avg episode reward: [(0, '4.478')]
192
+ [2024-09-15 15:34:53,382][00920] Updated weights for policy 0, policy_version 190 (0.0013)
193
+ [2024-09-15 15:34:55,645][00920] Updated weights for policy 0, policy_version 200 (0.0012)
194
+ [2024-09-15 15:34:57,575][00283] Fps is (10 sec: 18022.5, 60 sec: 17039.4, 300 sec: 17039.4). Total num frames: 851968. Throughput: 0: 4500.1. Samples: 212236. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
195
+ [2024-09-15 15:34:57,578][00283] Avg episode reward: [(0, '4.743')]
196
+ [2024-09-15 15:34:57,581][00905] Saving new best policy, reward=4.743!
197
+ [2024-09-15 15:34:57,907][00920] Updated weights for policy 0, policy_version 210 (0.0012)
198
+ [2024-09-15 15:35:00,155][00920] Updated weights for policy 0, policy_version 220 (0.0012)
199
+ [2024-09-15 15:35:02,394][00920] Updated weights for policy 0, policy_version 230 (0.0012)
200
+ [2024-09-15 15:35:02,575][00283] Fps is (10 sec: 18022.3, 60 sec: 17128.7, 300 sec: 17128.7). Total num frames: 942080. Throughput: 0: 4501.2. Samples: 225796. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
201
+ [2024-09-15 15:35:02,578][00283] Avg episode reward: [(0, '4.534')]
202
+ [2024-09-15 15:35:04,706][00920] Updated weights for policy 0, policy_version 240 (0.0013)
203
+ [2024-09-15 15:35:07,015][00920] Updated weights for policy 0, policy_version 250 (0.0013)
204
+ [2024-09-15 15:35:07,575][00283] Fps is (10 sec: 18022.3, 60 sec: 17203.2, 300 sec: 17203.2). Total num frames: 1032192. Throughput: 0: 4493.0. Samples: 252700. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
205
+ [2024-09-15 15:35:07,578][00283] Avg episode reward: [(0, '4.654')]
206
+ [2024-09-15 15:35:09,271][00920] Updated weights for policy 0, policy_version 260 (0.0012)
207
+ [2024-09-15 15:35:11,563][00920] Updated weights for policy 0, policy_version 270 (0.0013)
208
+ [2024-09-15 15:35:12,575][00283] Fps is (10 sec: 18022.6, 60 sec: 18022.4, 300 sec: 17266.2). Total num frames: 1122304. Throughput: 0: 4500.6. Samples: 279820. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
209
+ [2024-09-15 15:35:12,577][00283] Avg episode reward: [(0, '4.668')]
210
+ [2024-09-15 15:35:13,812][00920] Updated weights for policy 0, policy_version 280 (0.0012)
211
+ [2024-09-15 15:35:16,111][00920] Updated weights for policy 0, policy_version 290 (0.0013)
212
+ [2024-09-15 15:35:17,575][00283] Fps is (10 sec: 18022.4, 60 sec: 18022.4, 300 sec: 17320.2). Total num frames: 1212416. Throughput: 0: 4496.8. Samples: 293320. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
213
+ [2024-09-15 15:35:17,578][00283] Avg episode reward: [(0, '4.511')]
214
+ [2024-09-15 15:35:18,423][00920] Updated weights for policy 0, policy_version 300 (0.0012)
215
+ [2024-09-15 15:35:20,740][00920] Updated weights for policy 0, policy_version 310 (0.0012)
216
+ [2024-09-15 15:35:22,575][00283] Fps is (10 sec: 18022.3, 60 sec: 18022.4, 300 sec: 17367.0). Total num frames: 1302528. Throughput: 0: 4497.1. Samples: 320010. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
217
+ [2024-09-15 15:35:22,578][00283] Avg episode reward: [(0, '4.327')]
218
+ [2024-09-15 15:35:22,966][00920] Updated weights for policy 0, policy_version 320 (0.0012)
219
+ [2024-09-15 15:35:25,248][00920] Updated weights for policy 0, policy_version 330 (0.0012)
220
+ [2024-09-15 15:35:27,497][00920] Updated weights for policy 0, policy_version 340 (0.0012)
221
+ [2024-09-15 15:35:27,575][00283] Fps is (10 sec: 18022.4, 60 sec: 18022.4, 300 sec: 17408.0). Total num frames: 1392640. Throughput: 0: 4505.7. Samples: 347218. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
222
+ [2024-09-15 15:35:27,577][00283] Avg episode reward: [(0, '4.523')]
223
+ [2024-09-15 15:35:29,759][00920] Updated weights for policy 0, policy_version 350 (0.0012)
224
+ [2024-09-15 15:35:32,112][00920] Updated weights for policy 0, policy_version 360 (0.0013)
225
+ [2024-09-15 15:35:32,575][00283] Fps is (10 sec: 18022.4, 60 sec: 18022.4, 300 sec: 17444.1). Total num frames: 1482752. Throughput: 0: 4504.8. Samples: 360804. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
226
+ [2024-09-15 15:35:32,577][00283] Avg episode reward: [(0, '4.304')]
227
+ [2024-09-15 15:35:34,357][00920] Updated weights for policy 0, policy_version 370 (0.0013)
228
+ [2024-09-15 15:35:36,702][00920] Updated weights for policy 0, policy_version 380 (0.0013)
229
+ [2024-09-15 15:35:37,575][00283] Fps is (10 sec: 17613.0, 60 sec: 17954.1, 300 sec: 17430.8). Total num frames: 1568768. Throughput: 0: 4493.7. Samples: 387284. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
230
+ [2024-09-15 15:35:37,577][00283] Avg episode reward: [(0, '4.624')]
231
+ [2024-09-15 15:35:38,950][00920] Updated weights for policy 0, policy_version 390 (0.0013)
232
+ [2024-09-15 15:35:41,209][00920] Updated weights for policy 0, policy_version 400 (0.0012)
233
+ [2024-09-15 15:35:42,575][00283] Fps is (10 sec: 18022.6, 60 sec: 18022.4, 300 sec: 17505.0). Total num frames: 1662976. Throughput: 0: 4493.3. Samples: 414436. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
234
+ [2024-09-15 15:35:42,578][00283] Avg episode reward: [(0, '4.489')]
235
+ [2024-09-15 15:35:43,487][00920] Updated weights for policy 0, policy_version 410 (0.0012)
236
+ [2024-09-15 15:35:45,822][00920] Updated weights for policy 0, policy_version 420 (0.0013)
237
+ [2024-09-15 15:35:47,575][00283] Fps is (10 sec: 18022.2, 60 sec: 17954.1, 300 sec: 17489.9). Total num frames: 1748992. Throughput: 0: 4487.1. Samples: 427714. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
238
+ [2024-09-15 15:35:47,577][00283] Avg episode reward: [(0, '5.006')]
239
+ [2024-09-15 15:35:47,580][00905] Saving new best policy, reward=5.006!
240
+ [2024-09-15 15:35:48,125][00920] Updated weights for policy 0, policy_version 430 (0.0012)
241
+ [2024-09-15 15:35:50,325][00920] Updated weights for policy 0, policy_version 440 (0.0012)
242
+ [2024-09-15 15:35:52,575][00283] Fps is (10 sec: 17612.7, 60 sec: 17954.1, 300 sec: 17515.3). Total num frames: 1839104. Throughput: 0: 4491.3. Samples: 454810. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
243
+ [2024-09-15 15:35:52,577][00283] Avg episode reward: [(0, '4.720')]
244
+ [2024-09-15 15:35:52,585][00905] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000449_1839104.pth...
245
+ [2024-09-15 15:35:52,689][00920] Updated weights for policy 0, policy_version 450 (0.0012)
246
+ [2024-09-15 15:35:54,893][00920] Updated weights for policy 0, policy_version 460 (0.0013)
247
+ [2024-09-15 15:35:57,162][00920] Updated weights for policy 0, policy_version 470 (0.0012)
248
+ [2024-09-15 15:35:57,575][00283] Fps is (10 sec: 18022.4, 60 sec: 17954.1, 300 sec: 17538.3). Total num frames: 1929216. Throughput: 0: 4487.6. Samples: 481760. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
249
+ [2024-09-15 15:35:57,577][00283] Avg episode reward: [(0, '4.500')]
250
+ [2024-09-15 15:35:59,523][00920] Updated weights for policy 0, policy_version 480 (0.0012)
251
+ [2024-09-15 15:36:01,794][00920] Updated weights for policy 0, policy_version 490 (0.0012)
252
+ [2024-09-15 15:36:02,575][00283] Fps is (10 sec: 18022.3, 60 sec: 17954.2, 300 sec: 17559.4). Total num frames: 2019328. Throughput: 0: 4479.7. Samples: 494908. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
253
+ [2024-09-15 15:36:02,578][00283] Avg episode reward: [(0, '4.667')]
254
+ [2024-09-15 15:36:04,050][00920] Updated weights for policy 0, policy_version 500 (0.0013)
255
+ [2024-09-15 15:36:06,281][00920] Updated weights for policy 0, policy_version 510 (0.0012)
256
+ [2024-09-15 15:36:07,575][00283] Fps is (10 sec: 18022.4, 60 sec: 17954.1, 300 sec: 17578.7). Total num frames: 2109440. Throughput: 0: 4493.8. Samples: 522230. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
257
+ [2024-09-15 15:36:07,578][00283] Avg episode reward: [(0, '4.579')]
258
+ [2024-09-15 15:36:08,561][00920] Updated weights for policy 0, policy_version 520 (0.0012)
259
+ [2024-09-15 15:36:10,832][00920] Updated weights for policy 0, policy_version 530 (0.0012)
260
+ [2024-09-15 15:36:12,575][00283] Fps is (10 sec: 18022.4, 60 sec: 17954.1, 300 sec: 17596.4). Total num frames: 2199552. Throughput: 0: 4486.7. Samples: 549120. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
261
+ [2024-09-15 15:36:12,577][00283] Avg episode reward: [(0, '4.761')]
262
+ [2024-09-15 15:36:13,176][00920] Updated weights for policy 0, policy_version 540 (0.0013)
263
+ [2024-09-15 15:36:15,427][00920] Updated weights for policy 0, policy_version 550 (0.0013)
264
+ [2024-09-15 15:36:17,575][00283] Fps is (10 sec: 18022.6, 60 sec: 17954.2, 300 sec: 17612.8). Total num frames: 2289664. Throughput: 0: 4483.1. Samples: 562544. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
265
+ [2024-09-15 15:36:17,578][00283] Avg episode reward: [(0, '4.830')]
266
+ [2024-09-15 15:36:17,672][00920] Updated weights for policy 0, policy_version 560 (0.0012)
267
+ [2024-09-15 15:36:19,912][00920] Updated weights for policy 0, policy_version 570 (0.0012)
268
+ [2024-09-15 15:36:22,200][00920] Updated weights for policy 0, policy_version 580 (0.0012)
269
+ [2024-09-15 15:36:22,575][00283] Fps is (10 sec: 18022.4, 60 sec: 17954.1, 300 sec: 17628.0). Total num frames: 2379776. Throughput: 0: 4501.6. Samples: 589858. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
270
+ [2024-09-15 15:36:22,577][00283] Avg episode reward: [(0, '5.021')]
271
+ [2024-09-15 15:36:22,585][00905] Saving new best policy, reward=5.021!
272
+ [2024-09-15 15:36:24,500][00920] Updated weights for policy 0, policy_version 590 (0.0012)
273
+ [2024-09-15 15:36:26,819][00920] Updated weights for policy 0, policy_version 600 (0.0012)
274
+ [2024-09-15 15:36:27,575][00283] Fps is (10 sec: 18022.4, 60 sec: 17954.2, 300 sec: 17642.1). Total num frames: 2469888. Throughput: 0: 4489.4. Samples: 616458. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
275
+ [2024-09-15 15:36:27,577][00283] Avg episode reward: [(0, '4.679')]
276
+ [2024-09-15 15:36:29,114][00920] Updated weights for policy 0, policy_version 610 (0.0012)
277
+ [2024-09-15 15:36:31,340][00920] Updated weights for policy 0, policy_version 620 (0.0012)
278
+ [2024-09-15 15:36:32,575][00283] Fps is (10 sec: 18022.4, 60 sec: 17954.1, 300 sec: 17655.2). Total num frames: 2560000. Throughput: 0: 4495.9. Samples: 630028. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
279
+ [2024-09-15 15:36:32,577][00283] Avg episode reward: [(0, '4.972')]
280
+ [2024-09-15 15:36:33,590][00920] Updated weights for policy 0, policy_version 630 (0.0013)
281
+ [2024-09-15 15:36:35,849][00920] Updated weights for policy 0, policy_version 640 (0.0012)
282
+ [2024-09-15 15:36:37,575][00283] Fps is (10 sec: 18022.3, 60 sec: 18022.4, 300 sec: 17667.4). Total num frames: 2650112. Throughput: 0: 4501.5. Samples: 657376. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
283
+ [2024-09-15 15:36:37,578][00283] Avg episode reward: [(0, '4.711')]
284
+ [2024-09-15 15:36:38,199][00920] Updated weights for policy 0, policy_version 650 (0.0013)
285
+ [2024-09-15 15:36:40,549][00920] Updated weights for policy 0, policy_version 660 (0.0013)
286
+ [2024-09-15 15:36:42,575][00283] Fps is (10 sec: 18022.4, 60 sec: 17954.1, 300 sec: 17678.9). Total num frames: 2740224. Throughput: 0: 4489.2. Samples: 683774. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
287
+ [2024-09-15 15:36:42,578][00283] Avg episode reward: [(0, '5.622')]
288
+ [2024-09-15 15:36:42,586][00905] Saving new best policy, reward=5.622!
289
+ [2024-09-15 15:36:42,762][00920] Updated weights for policy 0, policy_version 670 (0.0013)
290
+ [2024-09-15 15:36:45,053][00920] Updated weights for policy 0, policy_version 680 (0.0012)
291
+ [2024-09-15 15:36:47,268][00920] Updated weights for policy 0, policy_version 690 (0.0012)
292
+ [2024-09-15 15:36:47,575][00283] Fps is (10 sec: 18022.4, 60 sec: 18022.4, 300 sec: 17689.6). Total num frames: 2830336. Throughput: 0: 4501.4. Samples: 697472. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
293
+ [2024-09-15 15:36:47,577][00283] Avg episode reward: [(0, '5.687')]
294
+ [2024-09-15 15:36:47,579][00905] Saving new best policy, reward=5.687!
295
+ [2024-09-15 15:36:49,519][00920] Updated weights for policy 0, policy_version 700 (0.0013)
296
+ [2024-09-15 15:36:51,813][00920] Updated weights for policy 0, policy_version 710 (0.0012)
297
+ [2024-09-15 15:36:52,575][00283] Fps is (10 sec: 18022.4, 60 sec: 18022.4, 300 sec: 17699.7). Total num frames: 2920448. Throughput: 0: 4498.7. Samples: 724672. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
298
+ [2024-09-15 15:36:52,578][00283] Avg episode reward: [(0, '5.521')]
299
+ [2024-09-15 15:36:54,144][00920] Updated weights for policy 0, policy_version 720 (0.0013)
300
+ [2024-09-15 15:36:56,428][00920] Updated weights for policy 0, policy_version 730 (0.0013)
301
+ [2024-09-15 15:36:57,575][00283] Fps is (10 sec: 18022.3, 60 sec: 18022.4, 300 sec: 17709.2). Total num frames: 3010560. Throughput: 0: 4497.1. Samples: 751490. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
302
+ [2024-09-15 15:36:57,577][00283] Avg episode reward: [(0, '5.582')]
303
+ [2024-09-15 15:36:58,639][00920] Updated weights for policy 0, policy_version 740 (0.0012)
304
+ [2024-09-15 15:37:00,911][00920] Updated weights for policy 0, policy_version 750 (0.0012)
305
+ [2024-09-15 15:37:02,575][00283] Fps is (10 sec: 18022.5, 60 sec: 18022.4, 300 sec: 17718.1). Total num frames: 3100672. Throughput: 0: 4504.9. Samples: 765266. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
306
+ [2024-09-15 15:37:02,577][00283] Avg episode reward: [(0, '4.894')]
307
+ [2024-09-15 15:37:03,194][00920] Updated weights for policy 0, policy_version 760 (0.0012)
308
+ [2024-09-15 15:37:05,466][00920] Updated weights for policy 0, policy_version 770 (0.0013)
309
+ [2024-09-15 15:37:07,575][00283] Fps is (10 sec: 17612.9, 60 sec: 17954.1, 300 sec: 17703.8). Total num frames: 3186688. Throughput: 0: 4488.7. Samples: 791850. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
310
+ [2024-09-15 15:37:07,578][00283] Avg episode reward: [(0, '5.259')]
311
+ [2024-09-15 15:37:07,889][00920] Updated weights for policy 0, policy_version 780 (0.0013)
312
+ [2024-09-15 15:37:10,133][00920] Updated weights for policy 0, policy_version 790 (0.0012)
313
+ [2024-09-15 15:37:12,451][00920] Updated weights for policy 0, policy_version 800 (0.0012)
314
+ [2024-09-15 15:37:12,575][00283] Fps is (10 sec: 17612.7, 60 sec: 17954.1, 300 sec: 17712.4). Total num frames: 3276800. Throughput: 0: 4490.4. Samples: 818526. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
315
+ [2024-09-15 15:37:12,578][00283] Avg episode reward: [(0, '5.193')]
316
+ [2024-09-15 15:37:14,683][00920] Updated weights for policy 0, policy_version 810 (0.0012)
317
+ [2024-09-15 15:37:16,951][00920] Updated weights for policy 0, policy_version 820 (0.0012)
318
+ [2024-09-15 15:37:17,575][00283] Fps is (10 sec: 18022.6, 60 sec: 17954.1, 300 sec: 17720.6). Total num frames: 3366912. Throughput: 0: 4489.6. Samples: 832060. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
319
+ [2024-09-15 15:37:17,577][00283] Avg episode reward: [(0, '5.314')]
320
+ [2024-09-15 15:37:19,229][00920] Updated weights for policy 0, policy_version 830 (0.0012)
321
+ [2024-09-15 15:37:21,559][00920] Updated weights for policy 0, policy_version 840 (0.0012)
322
+ [2024-09-15 15:37:22,575][00283] Fps is (10 sec: 18022.5, 60 sec: 17954.2, 300 sec: 17728.3). Total num frames: 3457024. Throughput: 0: 4479.1. Samples: 858934. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
323
+ [2024-09-15 15:37:22,578][00283] Avg episode reward: [(0, '5.790')]
324
+ [2024-09-15 15:37:22,586][00905] Saving new best policy, reward=5.790!
325
+ [2024-09-15 15:37:23,840][00920] Updated weights for policy 0, policy_version 850 (0.0012)
326
+ [2024-09-15 15:37:26,039][00920] Updated weights for policy 0, policy_version 860 (0.0012)
327
+ [2024-09-15 15:37:27,575][00283] Fps is (10 sec: 18022.3, 60 sec: 17954.1, 300 sec: 17735.7). Total num frames: 3547136. Throughput: 0: 4498.9. Samples: 886226. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
328
+ [2024-09-15 15:37:27,577][00283] Avg episode reward: [(0, '6.104')]
329
+ [2024-09-15 15:37:27,579][00905] Saving new best policy, reward=6.104!
330
+ [2024-09-15 15:37:28,319][00920] Updated weights for policy 0, policy_version 870 (0.0012)
331
+ [2024-09-15 15:37:30,542][00920] Updated weights for policy 0, policy_version 880 (0.0012)
332
+ [2024-09-15 15:37:32,575][00283] Fps is (10 sec: 18022.4, 60 sec: 17954.2, 300 sec: 17742.7). Total num frames: 3637248. Throughput: 0: 4497.3. Samples: 899848. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
333
+ [2024-09-15 15:37:32,577][00283] Avg episode reward: [(0, '6.669')]
334
+ [2024-09-15 15:37:32,586][00905] Saving new best policy, reward=6.669!
335
+ [2024-09-15 15:37:32,864][00920] Updated weights for policy 0, policy_version 890 (0.0012)
336
+ [2024-09-15 15:37:35,199][00920] Updated weights for policy 0, policy_version 900 (0.0013)
337
+ [2024-09-15 15:37:37,455][00920] Updated weights for policy 0, policy_version 910 (0.0012)
338
+ [2024-09-15 15:37:37,575][00283] Fps is (10 sec: 18022.4, 60 sec: 17954.2, 300 sec: 17749.3). Total num frames: 3727360. Throughput: 0: 4485.0. Samples: 926496. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
339
+ [2024-09-15 15:37:37,577][00283] Avg episode reward: [(0, '6.612')]
340
+ [2024-09-15 15:37:39,757][00920] Updated weights for policy 0, policy_version 920 (0.0012)
341
+ [2024-09-15 15:37:42,007][00920] Updated weights for policy 0, policy_version 930 (0.0012)
342
+ [2024-09-15 15:37:42,575][00283] Fps is (10 sec: 18022.4, 60 sec: 17954.2, 300 sec: 17755.7). Total num frames: 3817472. Throughput: 0: 4491.7. Samples: 953616. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
343
+ [2024-09-15 15:37:42,577][00283] Avg episode reward: [(0, '7.084')]
344
+ [2024-09-15 15:37:42,585][00905] Saving new best policy, reward=7.084!
345
+ [2024-09-15 15:37:44,276][00920] Updated weights for policy 0, policy_version 940 (0.0012)
346
+ [2024-09-15 15:37:46,586][00920] Updated weights for policy 0, policy_version 950 (0.0013)
347
+ [2024-09-15 15:37:47,575][00283] Fps is (10 sec: 18022.4, 60 sec: 17954.2, 300 sec: 17761.7). Total num frames: 3907584. Throughput: 0: 4487.0. Samples: 967180. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
348
+ [2024-09-15 15:37:47,577][00283] Avg episode reward: [(0, '6.702')]
349
+ [2024-09-15 15:37:48,893][00920] Updated weights for policy 0, policy_version 960 (0.0013)
350
+ [2024-09-15 15:37:51,120][00920] Updated weights for policy 0, policy_version 970 (0.0012)
351
+ [2024-09-15 15:37:52,575][00283] Fps is (10 sec: 18022.1, 60 sec: 17954.1, 300 sec: 17767.5). Total num frames: 3997696. Throughput: 0: 4490.3. Samples: 993912. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
352
+ [2024-09-15 15:37:52,578][00283] Avg episode reward: [(0, '6.957')]
353
+ [2024-09-15 15:37:52,586][00905] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000976_3997696.pth...
354
+ [2024-09-15 15:37:52,959][00905] Stopping Batcher_0...
355
+ [2024-09-15 15:37:52,960][00905] Loop batcher_evt_loop terminating...
356
+ [2024-09-15 15:37:52,960][00905] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
357
+ [2024-09-15 15:37:52,959][00283] Component Batcher_0 stopped!
358
+ [2024-09-15 15:37:52,961][00283] Component RolloutWorker_w0 process died already! Don't wait for it.
359
+ [2024-09-15 15:37:52,978][00920] Weights refcount: 2 0
360
+ [2024-09-15 15:37:52,979][00920] Stopping InferenceWorker_p0-w0...
361
+ [2024-09-15 15:37:52,980][00920] Loop inference_proc0-0_evt_loop terminating...
362
+ [2024-09-15 15:37:52,980][00283] Component InferenceWorker_p0-w0 stopped!
363
+ [2024-09-15 15:37:53,010][00927] Stopping RolloutWorker_w6...
364
+ [2024-09-15 15:37:53,010][00927] Loop rollout_proc6_evt_loop terminating...
365
+ [2024-09-15 15:37:53,011][00923] Stopping RolloutWorker_w4...
366
+ [2024-09-15 15:37:53,012][00923] Loop rollout_proc4_evt_loop terminating...
367
+ [2024-09-15 15:37:53,010][00283] Component RolloutWorker_w6 stopped!
368
+ [2024-09-15 15:37:53,013][00926] Stopping RolloutWorker_w7...
369
+ [2024-09-15 15:37:53,013][00922] Stopping RolloutWorker_w2...
370
+ [2024-09-15 15:37:53,013][00922] Loop rollout_proc2_evt_loop terminating...
371
+ [2024-09-15 15:37:53,013][00926] Loop rollout_proc7_evt_loop terminating...
372
+ [2024-09-15 15:37:53,012][00283] Component RolloutWorker_w4 stopped!
373
+ [2024-09-15 15:37:53,015][00921] Stopping RolloutWorker_w1...
374
+ [2024-09-15 15:37:53,016][00921] Loop rollout_proc1_evt_loop terminating...
375
+ [2024-09-15 15:37:53,016][00925] Stopping RolloutWorker_w5...
376
+ [2024-09-15 15:37:53,015][00283] Component RolloutWorker_w7 stopped!
377
+ [2024-09-15 15:37:53,017][00925] Loop rollout_proc5_evt_loop terminating...
378
+ [2024-09-15 15:37:53,017][00924] Stopping RolloutWorker_w3...
379
+ [2024-09-15 15:37:53,017][00283] Component RolloutWorker_w2 stopped!
380
+ [2024-09-15 15:37:53,018][00924] Loop rollout_proc3_evt_loop terminating...
381
+ [2024-09-15 15:37:53,018][00283] Component RolloutWorker_w1 stopped!
382
+ [2024-09-15 15:37:53,019][00283] Component RolloutWorker_w5 stopped!
383
+ [2024-09-15 15:37:53,020][00283] Component RolloutWorker_w3 stopped!
384
+ [2024-09-15 15:37:53,029][00905] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000449_1839104.pth
385
+ [2024-09-15 15:37:53,035][00905] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
386
+ [2024-09-15 15:37:53,123][00905] Stopping LearnerWorker_p0...
387
+ [2024-09-15 15:37:53,123][00905] Loop learner_proc0_evt_loop terminating...
388
+ [2024-09-15 15:37:53,123][00283] Component LearnerWorker_p0 stopped!
389
+ [2024-09-15 15:37:53,126][00283] Waiting for process learner_proc0 to stop...
390
+ [2024-09-15 15:37:53,958][00283] Waiting for process inference_proc0-0 to join...
391
+ [2024-09-15 15:37:53,961][00283] Waiting for process rollout_proc0 to join...
392
+ [2024-09-15 15:37:53,962][00283] Waiting for process rollout_proc1 to join...
393
+ [2024-09-15 15:37:53,964][00283] Waiting for process rollout_proc2 to join...
394
+ [2024-09-15 15:37:53,966][00283] Waiting for process rollout_proc3 to join...
395
+ [2024-09-15 15:37:53,968][00283] Waiting for process rollout_proc4 to join...
396
+ [2024-09-15 15:37:53,970][00283] Waiting for process rollout_proc5 to join...
397
+ [2024-09-15 15:37:53,972][00283] Waiting for process rollout_proc6 to join...
398
+ [2024-09-15 15:37:53,973][00283] Waiting for process rollout_proc7 to join...
399
+ [2024-09-15 15:37:53,975][00283] Batcher 0 profile tree view:
400
+ batching: 13.5559, releasing_batches: 0.0228
401
+ [2024-09-15 15:37:53,976][00283] InferenceWorker_p0-w0 profile tree view:
402
+ wait_policy: 0.0001
403
+ wait_policy_total: 3.9341
404
+ update_model: 3.6129
405
+ weight_update: 0.0012
406
+ one_step: 0.0026
407
+ handle_policy_step: 209.1558
408
+ deserialize: 7.8546, stack: 1.3917, obs_to_device_normalize: 49.2185, forward: 105.4844, send_messages: 13.5968
409
+ prepare_outputs: 22.3562
410
+ to_cpu: 13.1604
411
+ [2024-09-15 15:37:53,977][00283] Learner 0 profile tree view:
412
+ misc: 0.0052, prepare_batch: 10.4311
413
+ train: 24.0978
414
+ epoch_init: 0.0055, minibatch_init: 0.0061, losses_postprocess: 0.3000, kl_divergence: 0.4024, after_optimizer: 5.3092
415
+ calculate_losses: 10.1043
416
+ losses_init: 0.0033, forward_head: 0.6827, bptt_initial: 6.5923, tail: 0.5541, advantages_returns: 0.1398, losses: 1.0380
417
+ bptt: 0.9309
418
+ bptt_forward_core: 0.8807
419
+ update: 7.6408
420
+ clip: 0.7823
421
+ [2024-09-15 15:37:53,980][00283] RolloutWorker_w7 profile tree view:
422
+ wait_for_trajectories: 0.1627, enqueue_policy_requests: 8.2873, env_step: 137.4009, overhead: 6.8411, complete_rollouts: 0.2546
423
+ save_policy_outputs: 9.7021
424
+ split_output_tensors: 3.8621
425
+ [2024-09-15 15:37:53,981][00283] Loop Runner_EvtLoop terminating...
426
+ [2024-09-15 15:37:53,984][00283] Runner profile tree view:
427
+ main_loop: 236.1357
428
+ [2024-09-15 15:37:53,985][00283] Collected {0: 4005888}, FPS: 16964.3
429
+ [2024-09-15 15:37:54,248][00283] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
430
+ [2024-09-15 15:37:54,250][00283] Overriding arg 'num_workers' with value 1 passed from command line
431
+ [2024-09-15 15:37:54,251][00283] Adding new argument 'no_render'=True that is not in the saved config file!
432
+ [2024-09-15 15:37:54,253][00283] Adding new argument 'save_video'=True that is not in the saved config file!
433
+ [2024-09-15 15:37:54,254][00283] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
434
+ [2024-09-15 15:37:54,255][00283] Adding new argument 'video_name'=None that is not in the saved config file!
435
+ [2024-09-15 15:37:54,256][00283] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
436
+ [2024-09-15 15:37:54,257][00283] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
437
+ [2024-09-15 15:37:54,259][00283] Adding new argument 'push_to_hub'=False that is not in the saved config file!
438
+ [2024-09-15 15:37:54,259][00283] Adding new argument 'hf_repository'=None that is not in the saved config file!
439
+ [2024-09-15 15:37:54,261][00283] Adding new argument 'policy_index'=0 that is not in the saved config file!
440
+ [2024-09-15 15:37:54,262][00283] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
441
+ [2024-09-15 15:37:54,264][00283] Adding new argument 'train_script'=None that is not in the saved config file!
442
+ [2024-09-15 15:37:54,265][00283] Adding new argument 'enjoy_script'=None that is not in the saved config file!
443
+ [2024-09-15 15:37:54,266][00283] Using frameskip 1 and render_action_repeat=4 for evaluation
444
+ [2024-09-15 15:37:54,295][00283] Doom resolution: 160x120, resize resolution: (128, 72)
445
+ [2024-09-15 15:37:54,298][00283] RunningMeanStd input shape: (3, 72, 128)
446
+ [2024-09-15 15:37:54,300][00283] RunningMeanStd input shape: (1,)
447
+ [2024-09-15 15:37:54,314][00283] ConvEncoder: input_channels=3
448
+ [2024-09-15 15:37:54,426][00283] Conv encoder output size: 512
449
+ [2024-09-15 15:37:54,427][00283] Policy head output size: 512
450
+ [2024-09-15 15:37:54,570][00283] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
451
+ [2024-09-15 15:37:55,418][00283] Num frames 100...
452
+ [2024-09-15 15:37:55,538][00283] Num frames 200...
453
+ [2024-09-15 15:37:55,659][00283] Num frames 300...
454
+ [2024-09-15 15:37:55,780][00283] Num frames 400...
455
+ [2024-09-15 15:37:55,892][00283] Avg episode rewards: #0: 5.480, true rewards: #0: 4.480
456
+ [2024-09-15 15:37:55,894][00283] Avg episode reward: 5.480, avg true_objective: 4.480
457
+ [2024-09-15 15:37:55,956][00283] Num frames 500...
458
+ [2024-09-15 15:37:56,071][00283] Num frames 600...
459
+ [2024-09-15 15:37:56,188][00283] Num frames 700...
460
+ [2024-09-15 15:37:56,313][00283] Num frames 800...
461
+ [2024-09-15 15:37:56,406][00283] Avg episode rewards: #0: 6.160, true rewards: #0: 4.160
462
+ [2024-09-15 15:37:56,407][00283] Avg episode reward: 6.160, avg true_objective: 4.160
463
+ [2024-09-15 15:37:56,491][00283] Num frames 900...
464
+ [2024-09-15 15:37:56,611][00283] Num frames 1000...
465
+ [2024-09-15 15:37:56,729][00283] Num frames 1100...
466
+ [2024-09-15 15:37:56,846][00283] Num frames 1200...
467
+ [2024-09-15 15:37:56,964][00283] Num frames 1300...
468
+ [2024-09-15 15:37:57,084][00283] Num frames 1400...
469
+ [2024-09-15 15:37:57,186][00283] Avg episode rewards: #0: 7.133, true rewards: #0: 4.800
470
+ [2024-09-15 15:37:57,187][00283] Avg episode reward: 7.133, avg true_objective: 4.800
471
+ [2024-09-15 15:37:57,260][00283] Num frames 1500...
472
+ [2024-09-15 15:37:57,377][00283] Num frames 1600...
473
+ [2024-09-15 15:37:57,498][00283] Num frames 1700...
474
+ [2024-09-15 15:37:57,615][00283] Num frames 1800...
475
+ [2024-09-15 15:37:57,736][00283] Num frames 1900...
476
+ [2024-09-15 15:37:57,901][00283] Avg episode rewards: #0: 7.483, true rewards: #0: 4.982
477
+ [2024-09-15 15:37:57,903][00283] Avg episode reward: 7.483, avg true_objective: 4.982
478
+ [2024-09-15 15:37:57,911][00283] Num frames 2000...
479
+ [2024-09-15 15:37:58,027][00283] Num frames 2100...
480
+ [2024-09-15 15:37:58,144][00283] Avg episode rewards: #0: 6.306, true rewards: #0: 4.306
481
+ [2024-09-15 15:37:58,145][00283] Avg episode reward: 6.306, avg true_objective: 4.306
482
+ [2024-09-15 15:37:58,201][00283] Num frames 2200...
483
+ [2024-09-15 15:37:58,314][00283] Num frames 2300...
484
+ [2024-09-15 15:37:58,431][00283] Num frames 2400...
485
+ [2024-09-15 15:37:58,546][00283] Num frames 2500...
486
+ [2024-09-15 15:37:58,668][00283] Num frames 2600...
487
+ [2024-09-15 15:37:58,843][00283] Avg episode rewards: #0: 6.662, true rewards: #0: 4.495
488
+ [2024-09-15 15:37:58,845][00283] Avg episode reward: 6.662, avg true_objective: 4.495
489
+ [2024-09-15 15:37:58,849][00283] Num frames 2700...
490
+ [2024-09-15 15:37:58,966][00283] Num frames 2800...
491
+ [2024-09-15 15:37:59,085][00283] Num frames 2900...
492
+ [2024-09-15 15:37:59,205][00283] Num frames 3000...
493
+ [2024-09-15 15:37:59,328][00283] Num frames 3100...
494
+ [2024-09-15 15:37:59,448][00283] Num frames 3200...
495
+ [2024-09-15 15:37:59,515][00283] Avg episode rewards: #0: 6.727, true rewards: #0: 4.584
496
+ [2024-09-15 15:37:59,516][00283] Avg episode reward: 6.727, avg true_objective: 4.584
497
+ [2024-09-15 15:37:59,628][00283] Num frames 3300...
498
+ [2024-09-15 15:37:59,754][00283] Num frames 3400...
499
+ [2024-09-15 15:37:59,883][00283] Num frames 3500...
500
+ [2024-09-15 15:38:00,012][00283] Num frames 3600...
501
+ [2024-09-15 15:38:00,154][00283] Avg episode rewards: #0: 6.571, true rewards: #0: 4.571
502
+ [2024-09-15 15:38:00,155][00283] Avg episode reward: 6.571, avg true_objective: 4.571
503
+ [2024-09-15 15:38:00,208][00283] Num frames 3700...
504
+ [2024-09-15 15:38:00,329][00283] Num frames 3800...
505
+ [2024-09-15 15:38:00,450][00283] Num frames 3900...
506
+ [2024-09-15 15:38:00,570][00283] Num frames 4000...
507
+ [2024-09-15 15:38:00,690][00283] Num frames 4100...
508
+ [2024-09-15 15:38:00,820][00283] Num frames 4200...
509
+ [2024-09-15 15:38:00,953][00283] Avg episode rewards: #0: 6.850, true rewards: #0: 4.739
510
+ [2024-09-15 15:38:00,954][00283] Avg episode reward: 6.850, avg true_objective: 4.739
511
+ [2024-09-15 15:38:00,996][00283] Num frames 4300...
512
+ [2024-09-15 15:38:01,115][00283] Num frames 4400...
513
+ [2024-09-15 15:38:01,233][00283] Num frames 4500...
514
+ [2024-09-15 15:38:01,352][00283] Num frames 4600...
515
+ [2024-09-15 15:38:01,504][00283] Avg episode rewards: #0: 6.781, true rewards: #0: 4.681
516
+ [2024-09-15 15:38:01,505][00283] Avg episode reward: 6.781, avg true_objective: 4.681
517
+ [2024-09-15 15:38:12,554][00283] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
518
+ [2024-09-15 15:39:48,505][00283] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
519
+ [2024-09-15 15:39:48,506][00283] Overriding arg 'num_workers' with value 1 passed from command line
520
+ [2024-09-15 15:39:48,507][00283] Adding new argument 'no_render'=True that is not in the saved config file!
521
+ [2024-09-15 15:39:48,508][00283] Adding new argument 'save_video'=True that is not in the saved config file!
522
+ [2024-09-15 15:39:48,510][00283] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
523
+ [2024-09-15 15:39:48,512][00283] Adding new argument 'video_name'=None that is not in the saved config file!
524
+ [2024-09-15 15:39:48,513][00283] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
525
+ [2024-09-15 15:39:48,515][00283] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
526
+ [2024-09-15 15:39:48,516][00283] Adding new argument 'push_to_hub'=True that is not in the saved config file!
527
+ [2024-09-15 15:39:48,518][00283] Adding new argument 'hf_repository'='Vivek-huggingface/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
528
+ [2024-09-15 15:39:48,519][00283] Adding new argument 'policy_index'=0 that is not in the saved config file!
529
+ [2024-09-15 15:39:48,520][00283] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
530
+ [2024-09-15 15:39:48,522][00283] Adding new argument 'train_script'=None that is not in the saved config file!
531
+ [2024-09-15 15:39:48,524][00283] Adding new argument 'enjoy_script'=None that is not in the saved config file!
532
+ [2024-09-15 15:39:48,525][00283] Using frameskip 1 and render_action_repeat=4 for evaluation
533
+ [2024-09-15 15:39:48,548][00283] RunningMeanStd input shape: (3, 72, 128)
534
+ [2024-09-15 15:39:48,550][00283] RunningMeanStd input shape: (1,)
535
+ [2024-09-15 15:39:48,562][00283] ConvEncoder: input_channels=3
536
+ [2024-09-15 15:39:48,600][00283] Conv encoder output size: 512
537
+ [2024-09-15 15:39:48,601][00283] Policy head output size: 512
538
+ [2024-09-15 15:39:48,620][00283] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
539
+ [2024-09-15 15:39:49,031][00283] Num frames 100...
540
+ [2024-09-15 15:39:49,151][00283] Num frames 200...
541
+ [2024-09-15 15:39:49,270][00283] Num frames 300...
542
+ [2024-09-15 15:39:49,390][00283] Num frames 400...
543
+ [2024-09-15 15:39:49,508][00283] Num frames 500...
544
+ [2024-09-15 15:39:49,628][00283] Num frames 600...
545
+ [2024-09-15 15:39:49,746][00283] Num frames 700...
546
+ [2024-09-15 15:39:49,880][00283] Avg episode rewards: #0: 12.680, true rewards: #0: 7.680
547
+ [2024-09-15 15:39:49,882][00283] Avg episode reward: 12.680, avg true_objective: 7.680
548
+ [2024-09-15 15:39:49,921][00283] Num frames 800...
549
+ [2024-09-15 15:39:50,037][00283] Num frames 900...
550
+ [2024-09-15 15:39:50,154][00283] Num frames 1000...
551
+ [2024-09-15 15:39:50,272][00283] Num frames 1100...
552
+ [2024-09-15 15:39:50,390][00283] Num frames 1200...
553
+ [2024-09-15 15:39:50,464][00283] Avg episode rewards: #0: 10.080, true rewards: #0: 6.080
554
+ [2024-09-15 15:39:50,466][00283] Avg episode reward: 10.080, avg true_objective: 6.080
555
+ [2024-09-15 15:39:50,564][00283] Num frames 1300...
556
+ [2024-09-15 15:39:50,680][00283] Num frames 1400...
557
+ [2024-09-15 15:39:50,796][00283] Num frames 1500...
558
+ [2024-09-15 15:39:50,913][00283] Num frames 1600...
559
+ [2024-09-15 15:39:51,030][00283] Num frames 1700...
560
+ [2024-09-15 15:39:51,147][00283] Num frames 1800...
561
+ [2024-09-15 15:39:51,265][00283] Num frames 1900...
562
+ [2024-09-15 15:39:51,384][00283] Num frames 2000...
563
+ [2024-09-15 15:39:51,503][00283] Num frames 2100...
564
+ [2024-09-15 15:39:51,623][00283] Num frames 2200...
565
+ [2024-09-15 15:39:51,767][00283] Avg episode rewards: #0: 13.243, true rewards: #0: 7.577
566
+ [2024-09-15 15:39:51,768][00283] Avg episode reward: 13.243, avg true_objective: 7.577
567
+ [2024-09-15 15:39:51,800][00283] Num frames 2300...
568
+ [2024-09-15 15:39:51,917][00283] Num frames 2400...
569
+ [2024-09-15 15:39:52,034][00283] Num frames 2500...
570
+ [2024-09-15 15:39:52,152][00283] Num frames 2600...
571
+ [2024-09-15 15:39:52,268][00283] Num frames 2700...
572
+ [2024-09-15 15:39:52,383][00283] Num frames 2800...
573
+ [2024-09-15 15:39:52,502][00283] Num frames 2900...
574
+ [2024-09-15 15:39:52,620][00283] Num frames 3000...
575
+ [2024-09-15 15:39:52,738][00283] Num frames 3100...
576
+ [2024-09-15 15:39:52,862][00283] Num frames 3200...
577
+ [2024-09-15 15:39:53,033][00283] Avg episode rewards: #0: 14.493, true rewards: #0: 8.242
578
+ [2024-09-15 15:39:53,035][00283] Avg episode reward: 14.493, avg true_objective: 8.242
579
+ [2024-09-15 15:39:53,039][00283] Num frames 3300...
580
+ [2024-09-15 15:39:53,156][00283] Num frames 3400...
581
+ [2024-09-15 15:39:53,271][00283] Num frames 3500...
582
+ [2024-09-15 15:39:53,388][00283] Num frames 3600...
583
+ [2024-09-15 15:39:53,544][00283] Avg episode rewards: #0: 12.362, true rewards: #0: 7.362
584
+ [2024-09-15 15:39:53,546][00283] Avg episode reward: 12.362, avg true_objective: 7.362
585
+ [2024-09-15 15:39:53,569][00283] Num frames 3700...
586
+ [2024-09-15 15:39:53,687][00283] Num frames 3800...
587
+ [2024-09-15 15:39:53,812][00283] Num frames 3900...
588
+ [2024-09-15 15:39:53,937][00283] Num frames 4000...
589
+ [2024-09-15 15:39:54,075][00283] Avg episode rewards: #0: 10.942, true rewards: #0: 6.775
590
+ [2024-09-15 15:39:54,076][00283] Avg episode reward: 10.942, avg true_objective: 6.775
591
+ [2024-09-15 15:39:54,118][00283] Num frames 4100...
592
+ [2024-09-15 15:39:54,236][00283] Num frames 4200...
593
+ [2024-09-15 15:39:54,353][00283] Num frames 4300...
594
+ [2024-09-15 15:39:54,470][00283] Num frames 4400...
595
+ [2024-09-15 15:39:54,594][00283] Num frames 4500...
596
+ [2024-09-15 15:39:54,722][00283] Num frames 4600...
597
+ [2024-09-15 15:39:54,850][00283] Num frames 4700...
598
+ [2024-09-15 15:39:54,977][00283] Num frames 4800...
599
+ [2024-09-15 15:39:55,074][00283] Avg episode rewards: #0: 11.333, true rewards: #0: 6.904
600
+ [2024-09-15 15:39:55,076][00283] Avg episode reward: 11.333, avg true_objective: 6.904
601
+ [2024-09-15 15:39:55,160][00283] Num frames 4900...
602
+ [2024-09-15 15:39:55,286][00283] Num frames 5000...
603
+ [2024-09-15 15:39:55,411][00283] Num frames 5100...
604
+ [2024-09-15 15:39:55,537][00283] Num frames 5200...
605
+ [2024-09-15 15:39:55,614][00283] Avg episode rewards: #0: 10.396, true rewards: #0: 6.521
606
+ [2024-09-15 15:39:55,616][00283] Avg episode reward: 10.396, avg true_objective: 6.521
607
+ [2024-09-15 15:39:55,718][00283] Num frames 5300...
608
+ [2024-09-15 15:39:55,845][00283] Num frames 5400...
609
+ [2024-09-15 15:39:55,965][00283] Num frames 5500...
610
+ [2024-09-15 15:39:56,084][00283] Num frames 5600...
611
+ [2024-09-15 15:39:56,216][00283] Avg episode rewards: #0: 9.850, true rewards: #0: 6.294
612
+ [2024-09-15 15:39:56,217][00283] Avg episode reward: 9.850, avg true_objective: 6.294
613
+ [2024-09-15 15:39:56,260][00283] Num frames 5700...
614
+ [2024-09-15 15:39:56,376][00283] Num frames 5800...
615
+ [2024-09-15 15:39:56,494][00283] Num frames 5900...
616
+ [2024-09-15 15:39:56,610][00283] Num frames 6000...
617
+ [2024-09-15 15:39:56,722][00283] Avg episode rewards: #0: 9.249, true rewards: #0: 6.049
618
+ [2024-09-15 15:39:56,723][00283] Avg episode reward: 9.249, avg true_objective: 6.049
619
+ [2024-09-15 15:40:09,911][00283] Replay video saved to /content/train_dir/default_experiment/replay.mp4!