Vivek's picture
Saving weights of epoch 1 at step 92
aa11173
import jax
print(jax.local_device_count())
import jax.numpy as jnp
import flax
import flax.linen as nn
from flax.training.common_utils import get_metrics,onehot,shard,shard_prng_key
from flax.training import train_state
from flax.metrics.tensorboard import SummaryWriter
from flax.training import checkpoints
import logging
import optax
import math
from tqdm import tqdm
from pathlib import Path
from typing import Callable
from itertools import chain
from flax.metrics import tensorboard
from datasets import load_dataset,load_metric
from transformers import GPT2Config,GPT2Tokenizer
from model_file import FlaxGPT2ForMultipleChoice
logger = logging.getLogger()
logger.setLevel(logging.INFO)
def main():
tokenizer=GPT2Tokenizer.from_pretrained('gpt2',pad_token='<|endoftext|>')
dataset=load_dataset('cosmos_qa')
def preprocess(example):
example['context&question']=example['context']+example['question']
example['first_sentence']=[example['context&question'],example['context&question'],example['context&question'],example['context&question']]
example['second_sentence']=example['answer0'],example['answer1'],example['answer2'],example['answer3']
return example
train_dataset=dataset['train'].map(preprocess)
validation_dataset=dataset['validation'].map(preprocess)
test_dataset=dataset['test'].map(preprocess)
#Remove after experiment
len_train_dataset=25262
len_validation_dataset=2985
len_test_dataset=6963
train_dataset=train_dataset.select(range(len_train_dataset))
test_dataset=test_dataset.select(range(len_test_dataset))
validation_dataset=validation_dataset.select(range(len_validation_dataset))
#remove_cols=train_dataset.column_names
def tokenize(examples):
a=tokenizer(examples['first_sentence'],examples['second_sentence'],padding='max_length',truncation=True,max_length=256,return_tensors='jax')
a['labels']=examples['label']
return a
train_dataset=train_dataset.map(tokenize)
validation_dataset=validation_dataset.map(tokenize)
test_dataset=test_dataset.map(tokenize)
remov_col=['id', 'context', 'question', 'answer0', 'answer1', 'answer2', 'answer3', 'labels', 'context&question', 'first_sentence', 'second_sentence']
train_dataset=train_dataset.remove_columns(remov_col)
validation_dataset=validation_dataset.remove_columns(remov_col)
test_dataset=test_dataset.remove_columns(remov_col)
per_device_batch_size=4
seed=0
num_train_epochs=3
learning_rate=2e-5
total_batch_size = per_device_batch_size * jax.local_device_count()
print('The overall batch size (both for training and eval) is', total_batch_size)
num_train_steps = len(train_dataset) // total_batch_size * num_train_epochs
num_validation_steps=len(validation_dataset)//total_batch_size*num_train_epochs
learning_rate_function = optax.linear_schedule(init_value=learning_rate, end_value=0, transition_steps=num_train_steps)
class TrainState(train_state.TrainState):
logits_function:Callable=flax.struct.field(pytree_node=False)
loss_function:Callable=flax.struct.field(pytree_node=False)
def adamw(weight_decay):
return optax.adamw(learning_rate=learning_rate_function,b1=0.9,b2=0.99,eps=1e-6,weight_decay=weight_decay)
decay_path=lambda p:not any(x in p for x in ['bias','LayerNorm.weight'])
def traverse(function):
def mask(data):
flat=flax.traverse_util.flatten_dict(data)
return flax.traverse_util.unflatten_dict({k:function(k,v) for k,v in flat.items()})
return mask
gradient_transformation=optax.chain(
optax.masked(adamw(0.0),mask=traverse(lambda path,_:decay_path(path))),
optax.masked(adamw(0.01),mask=traverse(lambda path,_:not decay_path(path))))
def loss_function(logits,labels):
logits=flax.linen.log_softmax(logits)
xentropy=optax.softmax_cross_entropy(logits,onehot(labels,num_classes=4))
return jnp.mean(xentropy)
def eval_function(logits):
return logits.argmax(-1)
model = FlaxGPT2ForMultipleChoice.from_pretrained('gpt2-medium',input_shape=(1,4,1))
state=TrainState.create(apply_fn=model.__call__,
params=model.params,
tx=gradient_transformation,
logits_function=eval_function,
loss_function=loss_function)
def train_step(state,batch,dropout_rng):
targets=batch.pop("label")
dropout_rng,new_dropout_rng=jax.random.split(dropout_rng)
def loss_function(params):
logits=state.apply_fn(**batch,params=params,dropout_rng=dropout_rng,train=True)[0]
loss=state.loss_function(logits,targets)
return loss
grad_function=jax.value_and_grad(loss_function)
loss,grad=grad_function(state.params)
grad=jax.lax.pmean(grad,"batch")
new_state=state.apply_gradients(grads=grad)
#Added.
logits=new_state.apply_fn(**batch,params=new_state.params,dropout_rng=dropout_rng,train=True)[0]
accuracy=jnp.equal(jnp.argmax(logits,axis=-1),targets)
metrics=jax.lax.pmean({"loss":loss,"learning_rate":learning_rate_function(state.step),'accuracy':accuracy},axis_name="batch")
return new_state,metrics,new_dropout_rng
parallel_train_step = jax.pmap(train_step, axis_name="batch", donate_argnums=(0,))
def eval_step(state, batch):
targets=batch.pop('label')
logits = state.apply_fn(**batch, params=state.params, train=False)
loss=state.loss_function(logits,targets)
predictions=state.logits_function(logits)
eval_accuracy=jnp.equal(predictions,targets)
#eval_acc=jnp.equal(predictions,targets)
metrics=jax.lax.pmean({"loss":loss,'accuracy':eval_accuracy},axis_name="batch")
#return state.logits_function(logits) #(8,4)
return targets,predictions,metrics
parallel_eval_step = jax.pmap(eval_step, axis_name="batch")
def glue_train_data_loader(rng,dataset,batch_size):
steps_per_epoch=len_train_dataset//batch_size
perms=jax.random.permutation(rng,len(dataset))
perms=perms[:steps_per_epoch*batch_size]
perms=perms.reshape((steps_per_epoch,batch_size))
for perm in perms:
batch=dataset[perm]
batch={k:jnp.array(v) for k,v in batch.items()}
batch=shard(batch)
yield batch
rng=jax.random.PRNGKey(seed)
dropout_rngs=jax.random.split(rng,jax.local_device_count())
def glue_eval_data_loader(dataset, batch_size):
for i in range(len_validation_dataset // batch_size):
batch = dataset[i * batch_size : (i + 1) * batch_size]
batch = {k: jnp.array(v) for k, v in batch.items()}
batch = shard(batch)
yield batch
state = flax.jax_utils.replicate(state)
#metrics_list = list_metrics()
actual_task = "mnli"
metric = load_metric('glue', "mnli")
actual_taskmetric = load_metric('glue', actual_task)
workdir='./results_tensorboard'
summary_writer = tensorboard.SummaryWriter(workdir)
#summary_writer.hparams(dict(GPT2Config()))
logger.info(f"***** Running training *****")
logger.info(f" Num examples = {len_train_dataset}")
logger.info(f" Num Epochs = {1}")
logger.info(f" Instantaneous batch size per device = {per_device_batch_size}")
logger.info(f" Total train batch size = {total_batch_size}")
logger.info(f" Total optimization steps = {num_train_steps}")
for i, epoch in enumerate(tqdm(range(1, num_train_epochs+1), desc=f"Epoch ...", position=0, leave=True)):
rng, input_rng = jax.random.split(rng)
train_acc_metrics=[]
train_loss_metrics=[]
eval_acc_metrics=[]
eval_loss_metrics=[]
# train
with tqdm(total=len_train_dataset // total_batch_size, desc="Training...", leave=False) as progress_bar_train:
for idx,batch in enumerate(glue_train_data_loader(input_rng, train_dataset, total_batch_size)):
state, train_metric, dropout_rngs = parallel_train_step(state, batch, dropout_rngs)
train_acc_metrics.append(jax.device_get(train_metric['accuracy']).mean().item())
train_loss_metrics.append(flax.jax_utils.unreplicate(train_metric)['loss'].item())
if idx%5==0:
summary_writer.scalar('train_loss',flax.jax_utils.unreplicate(train_metric)['loss'].item(),idx)
summary_writer.scalar('train_accuracy', jax.device_get(train_metric['accuracy']).mean().item(),idx)
progress_bar_train.update(1)
# evaluate
with tqdm(total=len_validation_dataset // total_batch_size, desc="Evaluating...", leave=False) as progress_bar_eval:
for idx,batch in enumerate(glue_eval_data_loader(validation_dataset, total_batch_size)):
labels,predictions,eval_metric=parallel_eval_step(state, batch)
eval_acc_metrics.append(jax.device_get(eval_metric['accuracy']).mean().item())
eval_loss_metrics.append(flax.jax_utils.unreplicate(eval_metric)['loss'].item())
progress_bar_eval.update(1)
if idx%5==0:
logger.info(f"eval_step_loss{idx}: {flax.jax_utils.unreplicate(eval_metric)['loss'].item()} eval_step_acc{idx}: {jax.device_get(eval_metric['accuracy']).mean().item()}")
summary_writer.scalar('eval_loss',flax.jax_utils.unreplicate(eval_metric)['loss'].item(),idx)
summary_writer.scalar('eval_accuracy', jax.device_get(eval_metric['accuracy']).mean().item(),idx)
params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
model.save_pretrained(
'.',
params=params,
push_to_hub=True,
commit_message=f"Saving weights of epoch {epoch} at step {idx}",)
#correct
logger.info(f"---------------------Epoch {epoch} done-----------------")
logger.info(f"Train loss: {jax.device_get(jnp.array(train_loss_metrics)).mean().item()} Train accuracy: {jax.device_get(jnp.array(train_acc_metrics)).mean().item()}")
logger.info(f"Eval loss: {jax.device_get(jnp.array(eval_loss_metrics)).mean().item()} Eval accuracy: {jax.device_get(jnp.array(eval_acc_metrics)).mean().item()}")
summary_writer.flush()
if __name__ == "__main__":
main()