add colab notebook
Browse files- GPT2(error).ipynb +1074 -0
- Untitled330.ipynb +470 -0
GPT2(error).ipynb
ADDED
@@ -0,0 +1,1074 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"name": "GPT2(error).ipynb",
|
7 |
+
"provenance": [],
|
8 |
+
"collapsed_sections": []
|
9 |
+
},
|
10 |
+
"kernelspec": {
|
11 |
+
"name": "python3",
|
12 |
+
"display_name": "Python 3"
|
13 |
+
},
|
14 |
+
"language_info": {
|
15 |
+
"name": "python"
|
16 |
+
},
|
17 |
+
"widgets": {
|
18 |
+
"application/vnd.jupyter.widget-state+json": {
|
19 |
+
"1b266a2c1cf646a392a46e39586282b3": {
|
20 |
+
"model_module": "@jupyter-widgets/controls",
|
21 |
+
"model_name": "HBoxModel",
|
22 |
+
"state": {
|
23 |
+
"_view_name": "HBoxView",
|
24 |
+
"_dom_classes": [],
|
25 |
+
"_model_name": "HBoxModel",
|
26 |
+
"_view_module": "@jupyter-widgets/controls",
|
27 |
+
"_model_module_version": "1.5.0",
|
28 |
+
"_view_count": null,
|
29 |
+
"_view_module_version": "1.5.0",
|
30 |
+
"box_style": "",
|
31 |
+
"layout": "IPY_MODEL_8ecfcf14981c4d82b5d9d3839a496f0b",
|
32 |
+
"_model_module": "@jupyter-widgets/controls",
|
33 |
+
"children": [
|
34 |
+
"IPY_MODEL_16b07572ac0d46798b2c2a292c3f9143",
|
35 |
+
"IPY_MODEL_cf412ff73fc647908154abc9b2847f38"
|
36 |
+
]
|
37 |
+
}
|
38 |
+
},
|
39 |
+
"8ecfcf14981c4d82b5d9d3839a496f0b": {
|
40 |
+
"model_module": "@jupyter-widgets/base",
|
41 |
+
"model_name": "LayoutModel",
|
42 |
+
"state": {
|
43 |
+
"_view_name": "LayoutView",
|
44 |
+
"grid_template_rows": null,
|
45 |
+
"right": null,
|
46 |
+
"justify_content": null,
|
47 |
+
"_view_module": "@jupyter-widgets/base",
|
48 |
+
"overflow": null,
|
49 |
+
"_model_module_version": "1.2.0",
|
50 |
+
"_view_count": null,
|
51 |
+
"flex_flow": null,
|
52 |
+
"width": null,
|
53 |
+
"min_width": null,
|
54 |
+
"border": null,
|
55 |
+
"align_items": null,
|
56 |
+
"bottom": null,
|
57 |
+
"_model_module": "@jupyter-widgets/base",
|
58 |
+
"top": null,
|
59 |
+
"grid_column": null,
|
60 |
+
"overflow_y": null,
|
61 |
+
"overflow_x": null,
|
62 |
+
"grid_auto_flow": null,
|
63 |
+
"grid_area": null,
|
64 |
+
"grid_template_columns": null,
|
65 |
+
"flex": null,
|
66 |
+
"_model_name": "LayoutModel",
|
67 |
+
"justify_items": null,
|
68 |
+
"grid_row": null,
|
69 |
+
"max_height": null,
|
70 |
+
"align_content": null,
|
71 |
+
"visibility": null,
|
72 |
+
"align_self": null,
|
73 |
+
"height": null,
|
74 |
+
"min_height": null,
|
75 |
+
"padding": null,
|
76 |
+
"grid_auto_rows": null,
|
77 |
+
"grid_gap": null,
|
78 |
+
"max_width": null,
|
79 |
+
"order": null,
|
80 |
+
"_view_module_version": "1.2.0",
|
81 |
+
"grid_template_areas": null,
|
82 |
+
"object_position": null,
|
83 |
+
"object_fit": null,
|
84 |
+
"grid_auto_columns": null,
|
85 |
+
"margin": null,
|
86 |
+
"display": null,
|
87 |
+
"left": null
|
88 |
+
}
|
89 |
+
},
|
90 |
+
"16b07572ac0d46798b2c2a292c3f9143": {
|
91 |
+
"model_module": "@jupyter-widgets/controls",
|
92 |
+
"model_name": "FloatProgressModel",
|
93 |
+
"state": {
|
94 |
+
"_view_name": "ProgressView",
|
95 |
+
"style": "IPY_MODEL_6ebc21286ae843e5b9ba4df8f4cebfe0",
|
96 |
+
"_dom_classes": [],
|
97 |
+
"description": "Downloading: 100%",
|
98 |
+
"_model_name": "FloatProgressModel",
|
99 |
+
"bar_style": "success",
|
100 |
+
"max": 1042301,
|
101 |
+
"_view_module": "@jupyter-widgets/controls",
|
102 |
+
"_model_module_version": "1.5.0",
|
103 |
+
"value": 1042301,
|
104 |
+
"_view_count": null,
|
105 |
+
"_view_module_version": "1.5.0",
|
106 |
+
"orientation": "horizontal",
|
107 |
+
"min": 0,
|
108 |
+
"description_tooltip": null,
|
109 |
+
"_model_module": "@jupyter-widgets/controls",
|
110 |
+
"layout": "IPY_MODEL_48246be80e82429da2d48f9d4a1aaf0a"
|
111 |
+
}
|
112 |
+
},
|
113 |
+
"cf412ff73fc647908154abc9b2847f38": {
|
114 |
+
"model_module": "@jupyter-widgets/controls",
|
115 |
+
"model_name": "HTMLModel",
|
116 |
+
"state": {
|
117 |
+
"_view_name": "HTMLView",
|
118 |
+
"style": "IPY_MODEL_5754900e885d4f509ede058b186fcab6",
|
119 |
+
"_dom_classes": [],
|
120 |
+
"description": "",
|
121 |
+
"_model_name": "HTMLModel",
|
122 |
+
"placeholder": "",
|
123 |
+
"_view_module": "@jupyter-widgets/controls",
|
124 |
+
"_model_module_version": "1.5.0",
|
125 |
+
"value": " 1.04M/1.04M [00:06<00:00, 154kB/s]",
|
126 |
+
"_view_count": null,
|
127 |
+
"_view_module_version": "1.5.0",
|
128 |
+
"description_tooltip": null,
|
129 |
+
"_model_module": "@jupyter-widgets/controls",
|
130 |
+
"layout": "IPY_MODEL_d0434381119c46489e17fcbccd9755ea"
|
131 |
+
}
|
132 |
+
},
|
133 |
+
"6ebc21286ae843e5b9ba4df8f4cebfe0": {
|
134 |
+
"model_module": "@jupyter-widgets/controls",
|
135 |
+
"model_name": "ProgressStyleModel",
|
136 |
+
"state": {
|
137 |
+
"_view_name": "StyleView",
|
138 |
+
"_model_name": "ProgressStyleModel",
|
139 |
+
"description_width": "initial",
|
140 |
+
"_view_module": "@jupyter-widgets/base",
|
141 |
+
"_model_module_version": "1.5.0",
|
142 |
+
"_view_count": null,
|
143 |
+
"_view_module_version": "1.2.0",
|
144 |
+
"bar_color": null,
|
145 |
+
"_model_module": "@jupyter-widgets/controls"
|
146 |
+
}
|
147 |
+
},
|
148 |
+
"48246be80e82429da2d48f9d4a1aaf0a": {
|
149 |
+
"model_module": "@jupyter-widgets/base",
|
150 |
+
"model_name": "LayoutModel",
|
151 |
+
"state": {
|
152 |
+
"_view_name": "LayoutView",
|
153 |
+
"grid_template_rows": null,
|
154 |
+
"right": null,
|
155 |
+
"justify_content": null,
|
156 |
+
"_view_module": "@jupyter-widgets/base",
|
157 |
+
"overflow": null,
|
158 |
+
"_model_module_version": "1.2.0",
|
159 |
+
"_view_count": null,
|
160 |
+
"flex_flow": null,
|
161 |
+
"width": null,
|
162 |
+
"min_width": null,
|
163 |
+
"border": null,
|
164 |
+
"align_items": null,
|
165 |
+
"bottom": null,
|
166 |
+
"_model_module": "@jupyter-widgets/base",
|
167 |
+
"top": null,
|
168 |
+
"grid_column": null,
|
169 |
+
"overflow_y": null,
|
170 |
+
"overflow_x": null,
|
171 |
+
"grid_auto_flow": null,
|
172 |
+
"grid_area": null,
|
173 |
+
"grid_template_columns": null,
|
174 |
+
"flex": null,
|
175 |
+
"_model_name": "LayoutModel",
|
176 |
+
"justify_items": null,
|
177 |
+
"grid_row": null,
|
178 |
+
"max_height": null,
|
179 |
+
"align_content": null,
|
180 |
+
"visibility": null,
|
181 |
+
"align_self": null,
|
182 |
+
"height": null,
|
183 |
+
"min_height": null,
|
184 |
+
"padding": null,
|
185 |
+
"grid_auto_rows": null,
|
186 |
+
"grid_gap": null,
|
187 |
+
"max_width": null,
|
188 |
+
"order": null,
|
189 |
+
"_view_module_version": "1.2.0",
|
190 |
+
"grid_template_areas": null,
|
191 |
+
"object_position": null,
|
192 |
+
"object_fit": null,
|
193 |
+
"grid_auto_columns": null,
|
194 |
+
"margin": null,
|
195 |
+
"display": null,
|
196 |
+
"left": null
|
197 |
+
}
|
198 |
+
},
|
199 |
+
"5754900e885d4f509ede058b186fcab6": {
|
200 |
+
"model_module": "@jupyter-widgets/controls",
|
201 |
+
"model_name": "DescriptionStyleModel",
|
202 |
+
"state": {
|
203 |
+
"_view_name": "StyleView",
|
204 |
+
"_model_name": "DescriptionStyleModel",
|
205 |
+
"description_width": "",
|
206 |
+
"_view_module": "@jupyter-widgets/base",
|
207 |
+
"_model_module_version": "1.5.0",
|
208 |
+
"_view_count": null,
|
209 |
+
"_view_module_version": "1.2.0",
|
210 |
+
"_model_module": "@jupyter-widgets/controls"
|
211 |
+
}
|
212 |
+
},
|
213 |
+
"d0434381119c46489e17fcbccd9755ea": {
|
214 |
+
"model_module": "@jupyter-widgets/base",
|
215 |
+
"model_name": "LayoutModel",
|
216 |
+
"state": {
|
217 |
+
"_view_name": "LayoutView",
|
218 |
+
"grid_template_rows": null,
|
219 |
+
"right": null,
|
220 |
+
"justify_content": null,
|
221 |
+
"_view_module": "@jupyter-widgets/base",
|
222 |
+
"overflow": null,
|
223 |
+
"_model_module_version": "1.2.0",
|
224 |
+
"_view_count": null,
|
225 |
+
"flex_flow": null,
|
226 |
+
"width": null,
|
227 |
+
"min_width": null,
|
228 |
+
"border": null,
|
229 |
+
"align_items": null,
|
230 |
+
"bottom": null,
|
231 |
+
"_model_module": "@jupyter-widgets/base",
|
232 |
+
"top": null,
|
233 |
+
"grid_column": null,
|
234 |
+
"overflow_y": null,
|
235 |
+
"overflow_x": null,
|
236 |
+
"grid_auto_flow": null,
|
237 |
+
"grid_area": null,
|
238 |
+
"grid_template_columns": null,
|
239 |
+
"flex": null,
|
240 |
+
"_model_name": "LayoutModel",
|
241 |
+
"justify_items": null,
|
242 |
+
"grid_row": null,
|
243 |
+
"max_height": null,
|
244 |
+
"align_content": null,
|
245 |
+
"visibility": null,
|
246 |
+
"align_self": null,
|
247 |
+
"height": null,
|
248 |
+
"min_height": null,
|
249 |
+
"padding": null,
|
250 |
+
"grid_auto_rows": null,
|
251 |
+
"grid_gap": null,
|
252 |
+
"max_width": null,
|
253 |
+
"order": null,
|
254 |
+
"_view_module_version": "1.2.0",
|
255 |
+
"grid_template_areas": null,
|
256 |
+
"object_position": null,
|
257 |
+
"object_fit": null,
|
258 |
+
"grid_auto_columns": null,
|
259 |
+
"margin": null,
|
260 |
+
"display": null,
|
261 |
+
"left": null
|
262 |
+
}
|
263 |
+
},
|
264 |
+
"73c4b8bc05f64477aa03d767f4483795": {
|
265 |
+
"model_module": "@jupyter-widgets/controls",
|
266 |
+
"model_name": "HBoxModel",
|
267 |
+
"state": {
|
268 |
+
"_view_name": "HBoxView",
|
269 |
+
"_dom_classes": [],
|
270 |
+
"_model_name": "HBoxModel",
|
271 |
+
"_view_module": "@jupyter-widgets/controls",
|
272 |
+
"_model_module_version": "1.5.0",
|
273 |
+
"_view_count": null,
|
274 |
+
"_view_module_version": "1.5.0",
|
275 |
+
"box_style": "",
|
276 |
+
"layout": "IPY_MODEL_6123827ad5964b4b8a17aaca618b4768",
|
277 |
+
"_model_module": "@jupyter-widgets/controls",
|
278 |
+
"children": [
|
279 |
+
"IPY_MODEL_5327d425e74d4a599214282b9b70d58b",
|
280 |
+
"IPY_MODEL_974490d04f18407f9f5a5785b2802c0a"
|
281 |
+
]
|
282 |
+
}
|
283 |
+
},
|
284 |
+
"6123827ad5964b4b8a17aaca618b4768": {
|
285 |
+
"model_module": "@jupyter-widgets/base",
|
286 |
+
"model_name": "LayoutModel",
|
287 |
+
"state": {
|
288 |
+
"_view_name": "LayoutView",
|
289 |
+
"grid_template_rows": null,
|
290 |
+
"right": null,
|
291 |
+
"justify_content": null,
|
292 |
+
"_view_module": "@jupyter-widgets/base",
|
293 |
+
"overflow": null,
|
294 |
+
"_model_module_version": "1.2.0",
|
295 |
+
"_view_count": null,
|
296 |
+
"flex_flow": null,
|
297 |
+
"width": null,
|
298 |
+
"min_width": null,
|
299 |
+
"border": null,
|
300 |
+
"align_items": null,
|
301 |
+
"bottom": null,
|
302 |
+
"_model_module": "@jupyter-widgets/base",
|
303 |
+
"top": null,
|
304 |
+
"grid_column": null,
|
305 |
+
"overflow_y": null,
|
306 |
+
"overflow_x": null,
|
307 |
+
"grid_auto_flow": null,
|
308 |
+
"grid_area": null,
|
309 |
+
"grid_template_columns": null,
|
310 |
+
"flex": null,
|
311 |
+
"_model_name": "LayoutModel",
|
312 |
+
"justify_items": null,
|
313 |
+
"grid_row": null,
|
314 |
+
"max_height": null,
|
315 |
+
"align_content": null,
|
316 |
+
"visibility": null,
|
317 |
+
"align_self": null,
|
318 |
+
"height": null,
|
319 |
+
"min_height": null,
|
320 |
+
"padding": null,
|
321 |
+
"grid_auto_rows": null,
|
322 |
+
"grid_gap": null,
|
323 |
+
"max_width": null,
|
324 |
+
"order": null,
|
325 |
+
"_view_module_version": "1.2.0",
|
326 |
+
"grid_template_areas": null,
|
327 |
+
"object_position": null,
|
328 |
+
"object_fit": null,
|
329 |
+
"grid_auto_columns": null,
|
330 |
+
"margin": null,
|
331 |
+
"display": null,
|
332 |
+
"left": null
|
333 |
+
}
|
334 |
+
},
|
335 |
+
"5327d425e74d4a599214282b9b70d58b": {
|
336 |
+
"model_module": "@jupyter-widgets/controls",
|
337 |
+
"model_name": "FloatProgressModel",
|
338 |
+
"state": {
|
339 |
+
"_view_name": "ProgressView",
|
340 |
+
"style": "IPY_MODEL_c3cc1723c39a4d74b2ab83bd23b5fcce",
|
341 |
+
"_dom_classes": [],
|
342 |
+
"description": "Downloading: 100%",
|
343 |
+
"_model_name": "FloatProgressModel",
|
344 |
+
"bar_style": "success",
|
345 |
+
"max": 456318,
|
346 |
+
"_view_module": "@jupyter-widgets/controls",
|
347 |
+
"_model_module_version": "1.5.0",
|
348 |
+
"value": 456318,
|
349 |
+
"_view_count": null,
|
350 |
+
"_view_module_version": "1.5.0",
|
351 |
+
"orientation": "horizontal",
|
352 |
+
"min": 0,
|
353 |
+
"description_tooltip": null,
|
354 |
+
"_model_module": "@jupyter-widgets/controls",
|
355 |
+
"layout": "IPY_MODEL_391d59bf8d2845f88a83dc25c7cf89f3"
|
356 |
+
}
|
357 |
+
},
|
358 |
+
"974490d04f18407f9f5a5785b2802c0a": {
|
359 |
+
"model_module": "@jupyter-widgets/controls",
|
360 |
+
"model_name": "HTMLModel",
|
361 |
+
"state": {
|
362 |
+
"_view_name": "HTMLView",
|
363 |
+
"style": "IPY_MODEL_d60fa9fe71444784b78bdfba6ed6a9e1",
|
364 |
+
"_dom_classes": [],
|
365 |
+
"description": "",
|
366 |
+
"_model_name": "HTMLModel",
|
367 |
+
"placeholder": "",
|
368 |
+
"_view_module": "@jupyter-widgets/controls",
|
369 |
+
"_model_module_version": "1.5.0",
|
370 |
+
"value": " 456k/456k [00:04<00:00, 96.1kB/s]",
|
371 |
+
"_view_count": null,
|
372 |
+
"_view_module_version": "1.5.0",
|
373 |
+
"description_tooltip": null,
|
374 |
+
"_model_module": "@jupyter-widgets/controls",
|
375 |
+
"layout": "IPY_MODEL_41a3b55e5e264b85ada9558e5777790f"
|
376 |
+
}
|
377 |
+
},
|
378 |
+
"c3cc1723c39a4d74b2ab83bd23b5fcce": {
|
379 |
+
"model_module": "@jupyter-widgets/controls",
|
380 |
+
"model_name": "ProgressStyleModel",
|
381 |
+
"state": {
|
382 |
+
"_view_name": "StyleView",
|
383 |
+
"_model_name": "ProgressStyleModel",
|
384 |
+
"description_width": "initial",
|
385 |
+
"_view_module": "@jupyter-widgets/base",
|
386 |
+
"_model_module_version": "1.5.0",
|
387 |
+
"_view_count": null,
|
388 |
+
"_view_module_version": "1.2.0",
|
389 |
+
"bar_color": null,
|
390 |
+
"_model_module": "@jupyter-widgets/controls"
|
391 |
+
}
|
392 |
+
},
|
393 |
+
"391d59bf8d2845f88a83dc25c7cf89f3": {
|
394 |
+
"model_module": "@jupyter-widgets/base",
|
395 |
+
"model_name": "LayoutModel",
|
396 |
+
"state": {
|
397 |
+
"_view_name": "LayoutView",
|
398 |
+
"grid_template_rows": null,
|
399 |
+
"right": null,
|
400 |
+
"justify_content": null,
|
401 |
+
"_view_module": "@jupyter-widgets/base",
|
402 |
+
"overflow": null,
|
403 |
+
"_model_module_version": "1.2.0",
|
404 |
+
"_view_count": null,
|
405 |
+
"flex_flow": null,
|
406 |
+
"width": null,
|
407 |
+
"min_width": null,
|
408 |
+
"border": null,
|
409 |
+
"align_items": null,
|
410 |
+
"bottom": null,
|
411 |
+
"_model_module": "@jupyter-widgets/base",
|
412 |
+
"top": null,
|
413 |
+
"grid_column": null,
|
414 |
+
"overflow_y": null,
|
415 |
+
"overflow_x": null,
|
416 |
+
"grid_auto_flow": null,
|
417 |
+
"grid_area": null,
|
418 |
+
"grid_template_columns": null,
|
419 |
+
"flex": null,
|
420 |
+
"_model_name": "LayoutModel",
|
421 |
+
"justify_items": null,
|
422 |
+
"grid_row": null,
|
423 |
+
"max_height": null,
|
424 |
+
"align_content": null,
|
425 |
+
"visibility": null,
|
426 |
+
"align_self": null,
|
427 |
+
"height": null,
|
428 |
+
"min_height": null,
|
429 |
+
"padding": null,
|
430 |
+
"grid_auto_rows": null,
|
431 |
+
"grid_gap": null,
|
432 |
+
"max_width": null,
|
433 |
+
"order": null,
|
434 |
+
"_view_module_version": "1.2.0",
|
435 |
+
"grid_template_areas": null,
|
436 |
+
"object_position": null,
|
437 |
+
"object_fit": null,
|
438 |
+
"grid_auto_columns": null,
|
439 |
+
"margin": null,
|
440 |
+
"display": null,
|
441 |
+
"left": null
|
442 |
+
}
|
443 |
+
},
|
444 |
+
"d60fa9fe71444784b78bdfba6ed6a9e1": {
|
445 |
+
"model_module": "@jupyter-widgets/controls",
|
446 |
+
"model_name": "DescriptionStyleModel",
|
447 |
+
"state": {
|
448 |
+
"_view_name": "StyleView",
|
449 |
+
"_model_name": "DescriptionStyleModel",
|
450 |
+
"description_width": "",
|
451 |
+
"_view_module": "@jupyter-widgets/base",
|
452 |
+
"_model_module_version": "1.5.0",
|
453 |
+
"_view_count": null,
|
454 |
+
"_view_module_version": "1.2.0",
|
455 |
+
"_model_module": "@jupyter-widgets/controls"
|
456 |
+
}
|
457 |
+
},
|
458 |
+
"41a3b55e5e264b85ada9558e5777790f": {
|
459 |
+
"model_module": "@jupyter-widgets/base",
|
460 |
+
"model_name": "LayoutModel",
|
461 |
+
"state": {
|
462 |
+
"_view_name": "LayoutView",
|
463 |
+
"grid_template_rows": null,
|
464 |
+
"right": null,
|
465 |
+
"justify_content": null,
|
466 |
+
"_view_module": "@jupyter-widgets/base",
|
467 |
+
"overflow": null,
|
468 |
+
"_model_module_version": "1.2.0",
|
469 |
+
"_view_count": null,
|
470 |
+
"flex_flow": null,
|
471 |
+
"width": null,
|
472 |
+
"min_width": null,
|
473 |
+
"border": null,
|
474 |
+
"align_items": null,
|
475 |
+
"bottom": null,
|
476 |
+
"_model_module": "@jupyter-widgets/base",
|
477 |
+
"top": null,
|
478 |
+
"grid_column": null,
|
479 |
+
"overflow_y": null,
|
480 |
+
"overflow_x": null,
|
481 |
+
"grid_auto_flow": null,
|
482 |
+
"grid_area": null,
|
483 |
+
"grid_template_columns": null,
|
484 |
+
"flex": null,
|
485 |
+
"_model_name": "LayoutModel",
|
486 |
+
"justify_items": null,
|
487 |
+
"grid_row": null,
|
488 |
+
"max_height": null,
|
489 |
+
"align_content": null,
|
490 |
+
"visibility": null,
|
491 |
+
"align_self": null,
|
492 |
+
"height": null,
|
493 |
+
"min_height": null,
|
494 |
+
"padding": null,
|
495 |
+
"grid_auto_rows": null,
|
496 |
+
"grid_gap": null,
|
497 |
+
"max_width": null,
|
498 |
+
"order": null,
|
499 |
+
"_view_module_version": "1.2.0",
|
500 |
+
"grid_template_areas": null,
|
501 |
+
"object_position": null,
|
502 |
+
"object_fit": null,
|
503 |
+
"grid_auto_columns": null,
|
504 |
+
"margin": null,
|
505 |
+
"display": null,
|
506 |
+
"left": null
|
507 |
+
}
|
508 |
+
},
|
509 |
+
"aa4d6e2e9ac44e9bb40b7daccc91ee83": {
|
510 |
+
"model_module": "@jupyter-widgets/controls",
|
511 |
+
"model_name": "HBoxModel",
|
512 |
+
"state": {
|
513 |
+
"_view_name": "HBoxView",
|
514 |
+
"_dom_classes": [],
|
515 |
+
"_model_name": "HBoxModel",
|
516 |
+
"_view_module": "@jupyter-widgets/controls",
|
517 |
+
"_model_module_version": "1.5.0",
|
518 |
+
"_view_count": null,
|
519 |
+
"_view_module_version": "1.5.0",
|
520 |
+
"box_style": "",
|
521 |
+
"layout": "IPY_MODEL_c3b054972a6145d1ad03ca938a7ade9c",
|
522 |
+
"_model_module": "@jupyter-widgets/controls",
|
523 |
+
"children": [
|
524 |
+
"IPY_MODEL_644f4a69db534dd4a11172e5d010e8fe",
|
525 |
+
"IPY_MODEL_0e19c2d5b060490399efbfcda773e9ba"
|
526 |
+
]
|
527 |
+
}
|
528 |
+
},
|
529 |
+
"c3b054972a6145d1ad03ca938a7ade9c": {
|
530 |
+
"model_module": "@jupyter-widgets/base",
|
531 |
+
"model_name": "LayoutModel",
|
532 |
+
"state": {
|
533 |
+
"_view_name": "LayoutView",
|
534 |
+
"grid_template_rows": null,
|
535 |
+
"right": null,
|
536 |
+
"justify_content": null,
|
537 |
+
"_view_module": "@jupyter-widgets/base",
|
538 |
+
"overflow": null,
|
539 |
+
"_model_module_version": "1.2.0",
|
540 |
+
"_view_count": null,
|
541 |
+
"flex_flow": null,
|
542 |
+
"width": null,
|
543 |
+
"min_width": null,
|
544 |
+
"border": null,
|
545 |
+
"align_items": null,
|
546 |
+
"bottom": null,
|
547 |
+
"_model_module": "@jupyter-widgets/base",
|
548 |
+
"top": null,
|
549 |
+
"grid_column": null,
|
550 |
+
"overflow_y": null,
|
551 |
+
"overflow_x": null,
|
552 |
+
"grid_auto_flow": null,
|
553 |
+
"grid_area": null,
|
554 |
+
"grid_template_columns": null,
|
555 |
+
"flex": null,
|
556 |
+
"_model_name": "LayoutModel",
|
557 |
+
"justify_items": null,
|
558 |
+
"grid_row": null,
|
559 |
+
"max_height": null,
|
560 |
+
"align_content": null,
|
561 |
+
"visibility": null,
|
562 |
+
"align_self": null,
|
563 |
+
"height": null,
|
564 |
+
"min_height": null,
|
565 |
+
"padding": null,
|
566 |
+
"grid_auto_rows": null,
|
567 |
+
"grid_gap": null,
|
568 |
+
"max_width": null,
|
569 |
+
"order": null,
|
570 |
+
"_view_module_version": "1.2.0",
|
571 |
+
"grid_template_areas": null,
|
572 |
+
"object_position": null,
|
573 |
+
"object_fit": null,
|
574 |
+
"grid_auto_columns": null,
|
575 |
+
"margin": null,
|
576 |
+
"display": null,
|
577 |
+
"left": null
|
578 |
+
}
|
579 |
+
},
|
580 |
+
"644f4a69db534dd4a11172e5d010e8fe": {
|
581 |
+
"model_module": "@jupyter-widgets/controls",
|
582 |
+
"model_name": "FloatProgressModel",
|
583 |
+
"state": {
|
584 |
+
"_view_name": "ProgressView",
|
585 |
+
"style": "IPY_MODEL_109479db406d4085acff84904cdac4ef",
|
586 |
+
"_dom_classes": [],
|
587 |
+
"description": "Downloading: 100%",
|
588 |
+
"_model_name": "FloatProgressModel",
|
589 |
+
"bar_style": "success",
|
590 |
+
"max": 1355256,
|
591 |
+
"_view_module": "@jupyter-widgets/controls",
|
592 |
+
"_model_module_version": "1.5.0",
|
593 |
+
"value": 1355256,
|
594 |
+
"_view_count": null,
|
595 |
+
"_view_module_version": "1.5.0",
|
596 |
+
"orientation": "horizontal",
|
597 |
+
"min": 0,
|
598 |
+
"description_tooltip": null,
|
599 |
+
"_model_module": "@jupyter-widgets/controls",
|
600 |
+
"layout": "IPY_MODEL_1fb7fd7b44bf4b3a9e949f025487ff47"
|
601 |
+
}
|
602 |
+
},
|
603 |
+
"0e19c2d5b060490399efbfcda773e9ba": {
|
604 |
+
"model_module": "@jupyter-widgets/controls",
|
605 |
+
"model_name": "HTMLModel",
|
606 |
+
"state": {
|
607 |
+
"_view_name": "HTMLView",
|
608 |
+
"style": "IPY_MODEL_01c30370e3ff4b5caf9a3369841ad597",
|
609 |
+
"_dom_classes": [],
|
610 |
+
"description": "",
|
611 |
+
"_model_name": "HTMLModel",
|
612 |
+
"placeholder": "",
|
613 |
+
"_view_module": "@jupyter-widgets/controls",
|
614 |
+
"_model_module_version": "1.5.0",
|
615 |
+
"value": " 1.36M/1.36M [00:00<00:00, 1.73MB/s]",
|
616 |
+
"_view_count": null,
|
617 |
+
"_view_module_version": "1.5.0",
|
618 |
+
"description_tooltip": null,
|
619 |
+
"_model_module": "@jupyter-widgets/controls",
|
620 |
+
"layout": "IPY_MODEL_d19eedc2acce48d4be7189b422b5fcb9"
|
621 |
+
}
|
622 |
+
},
|
623 |
+
"109479db406d4085acff84904cdac4ef": {
|
624 |
+
"model_module": "@jupyter-widgets/controls",
|
625 |
+
"model_name": "ProgressStyleModel",
|
626 |
+
"state": {
|
627 |
+
"_view_name": "StyleView",
|
628 |
+
"_model_name": "ProgressStyleModel",
|
629 |
+
"description_width": "initial",
|
630 |
+
"_view_module": "@jupyter-widgets/base",
|
631 |
+
"_model_module_version": "1.5.0",
|
632 |
+
"_view_count": null,
|
633 |
+
"_view_module_version": "1.2.0",
|
634 |
+
"bar_color": null,
|
635 |
+
"_model_module": "@jupyter-widgets/controls"
|
636 |
+
}
|
637 |
+
},
|
638 |
+
"1fb7fd7b44bf4b3a9e949f025487ff47": {
|
639 |
+
"model_module": "@jupyter-widgets/base",
|
640 |
+
"model_name": "LayoutModel",
|
641 |
+
"state": {
|
642 |
+
"_view_name": "LayoutView",
|
643 |
+
"grid_template_rows": null,
|
644 |
+
"right": null,
|
645 |
+
"justify_content": null,
|
646 |
+
"_view_module": "@jupyter-widgets/base",
|
647 |
+
"overflow": null,
|
648 |
+
"_model_module_version": "1.2.0",
|
649 |
+
"_view_count": null,
|
650 |
+
"flex_flow": null,
|
651 |
+
"width": null,
|
652 |
+
"min_width": null,
|
653 |
+
"border": null,
|
654 |
+
"align_items": null,
|
655 |
+
"bottom": null,
|
656 |
+
"_model_module": "@jupyter-widgets/base",
|
657 |
+
"top": null,
|
658 |
+
"grid_column": null,
|
659 |
+
"overflow_y": null,
|
660 |
+
"overflow_x": null,
|
661 |
+
"grid_auto_flow": null,
|
662 |
+
"grid_area": null,
|
663 |
+
"grid_template_columns": null,
|
664 |
+
"flex": null,
|
665 |
+
"_model_name": "LayoutModel",
|
666 |
+
"justify_items": null,
|
667 |
+
"grid_row": null,
|
668 |
+
"max_height": null,
|
669 |
+
"align_content": null,
|
670 |
+
"visibility": null,
|
671 |
+
"align_self": null,
|
672 |
+
"height": null,
|
673 |
+
"min_height": null,
|
674 |
+
"padding": null,
|
675 |
+
"grid_auto_rows": null,
|
676 |
+
"grid_gap": null,
|
677 |
+
"max_width": null,
|
678 |
+
"order": null,
|
679 |
+
"_view_module_version": "1.2.0",
|
680 |
+
"grid_template_areas": null,
|
681 |
+
"object_position": null,
|
682 |
+
"object_fit": null,
|
683 |
+
"grid_auto_columns": null,
|
684 |
+
"margin": null,
|
685 |
+
"display": null,
|
686 |
+
"left": null
|
687 |
+
}
|
688 |
+
},
|
689 |
+
"01c30370e3ff4b5caf9a3369841ad597": {
|
690 |
+
"model_module": "@jupyter-widgets/controls",
|
691 |
+
"model_name": "DescriptionStyleModel",
|
692 |
+
"state": {
|
693 |
+
"_view_name": "StyleView",
|
694 |
+
"_model_name": "DescriptionStyleModel",
|
695 |
+
"description_width": "",
|
696 |
+
"_view_module": "@jupyter-widgets/base",
|
697 |
+
"_model_module_version": "1.5.0",
|
698 |
+
"_view_count": null,
|
699 |
+
"_view_module_version": "1.2.0",
|
700 |
+
"_model_module": "@jupyter-widgets/controls"
|
701 |
+
}
|
702 |
+
},
|
703 |
+
"d19eedc2acce48d4be7189b422b5fcb9": {
|
704 |
+
"model_module": "@jupyter-widgets/base",
|
705 |
+
"model_name": "LayoutModel",
|
706 |
+
"state": {
|
707 |
+
"_view_name": "LayoutView",
|
708 |
+
"grid_template_rows": null,
|
709 |
+
"right": null,
|
710 |
+
"justify_content": null,
|
711 |
+
"_view_module": "@jupyter-widgets/base",
|
712 |
+
"overflow": null,
|
713 |
+
"_model_module_version": "1.2.0",
|
714 |
+
"_view_count": null,
|
715 |
+
"flex_flow": null,
|
716 |
+
"width": null,
|
717 |
+
"min_width": null,
|
718 |
+
"border": null,
|
719 |
+
"align_items": null,
|
720 |
+
"bottom": null,
|
721 |
+
"_model_module": "@jupyter-widgets/base",
|
722 |
+
"top": null,
|
723 |
+
"grid_column": null,
|
724 |
+
"overflow_y": null,
|
725 |
+
"overflow_x": null,
|
726 |
+
"grid_auto_flow": null,
|
727 |
+
"grid_area": null,
|
728 |
+
"grid_template_columns": null,
|
729 |
+
"flex": null,
|
730 |
+
"_model_name": "LayoutModel",
|
731 |
+
"justify_items": null,
|
732 |
+
"grid_row": null,
|
733 |
+
"max_height": null,
|
734 |
+
"align_content": null,
|
735 |
+
"visibility": null,
|
736 |
+
"align_self": null,
|
737 |
+
"height": null,
|
738 |
+
"min_height": null,
|
739 |
+
"padding": null,
|
740 |
+
"grid_auto_rows": null,
|
741 |
+
"grid_gap": null,
|
742 |
+
"max_width": null,
|
743 |
+
"order": null,
|
744 |
+
"_view_module_version": "1.2.0",
|
745 |
+
"grid_template_areas": null,
|
746 |
+
"object_position": null,
|
747 |
+
"object_fit": null,
|
748 |
+
"grid_auto_columns": null,
|
749 |
+
"margin": null,
|
750 |
+
"display": null,
|
751 |
+
"left": null
|
752 |
+
}
|
753 |
+
}
|
754 |
+
}
|
755 |
+
}
|
756 |
+
},
|
757 |
+
"cells": [
|
758 |
+
{
|
759 |
+
"cell_type": "code",
|
760 |
+
"metadata": {
|
761 |
+
"id": "hYCVkKKAwSjV"
|
762 |
+
},
|
763 |
+
"source": [
|
764 |
+
"%%capture\n",
|
765 |
+
"!pip install transformers\n",
|
766 |
+
"!pip install datasets\n",
|
767 |
+
"!pip install --upgrade git+https://github.com/google/flax.git"
|
768 |
+
],
|
769 |
+
"execution_count": 1,
|
770 |
+
"outputs": []
|
771 |
+
},
|
772 |
+
{
|
773 |
+
"cell_type": "code",
|
774 |
+
"metadata": {
|
775 |
+
"id": "2gcm5rxByOXO",
|
776 |
+
"colab": {
|
777 |
+
"base_uri": "https://localhost:8080/",
|
778 |
+
"height": 164,
|
779 |
+
"referenced_widgets": [
|
780 |
+
"1b266a2c1cf646a392a46e39586282b3",
|
781 |
+
"8ecfcf14981c4d82b5d9d3839a496f0b",
|
782 |
+
"16b07572ac0d46798b2c2a292c3f9143",
|
783 |
+
"cf412ff73fc647908154abc9b2847f38",
|
784 |
+
"6ebc21286ae843e5b9ba4df8f4cebfe0",
|
785 |
+
"48246be80e82429da2d48f9d4a1aaf0a",
|
786 |
+
"5754900e885d4f509ede058b186fcab6",
|
787 |
+
"d0434381119c46489e17fcbccd9755ea",
|
788 |
+
"73c4b8bc05f64477aa03d767f4483795",
|
789 |
+
"6123827ad5964b4b8a17aaca618b4768",
|
790 |
+
"5327d425e74d4a599214282b9b70d58b",
|
791 |
+
"974490d04f18407f9f5a5785b2802c0a",
|
792 |
+
"c3cc1723c39a4d74b2ab83bd23b5fcce",
|
793 |
+
"391d59bf8d2845f88a83dc25c7cf89f3",
|
794 |
+
"d60fa9fe71444784b78bdfba6ed6a9e1",
|
795 |
+
"41a3b55e5e264b85ada9558e5777790f",
|
796 |
+
"aa4d6e2e9ac44e9bb40b7daccc91ee83",
|
797 |
+
"c3b054972a6145d1ad03ca938a7ade9c",
|
798 |
+
"644f4a69db534dd4a11172e5d010e8fe",
|
799 |
+
"0e19c2d5b060490399efbfcda773e9ba",
|
800 |
+
"109479db406d4085acff84904cdac4ef",
|
801 |
+
"1fb7fd7b44bf4b3a9e949f025487ff47",
|
802 |
+
"01c30370e3ff4b5caf9a3369841ad597",
|
803 |
+
"d19eedc2acce48d4be7189b422b5fcb9"
|
804 |
+
]
|
805 |
+
},
|
806 |
+
"outputId": "5814323f-d04d-408c-e833-8522806ea73b"
|
807 |
+
},
|
808 |
+
"source": [
|
809 |
+
"import jax\n",
|
810 |
+
"from transformers.modeling_flax_utils import FlaxPreTrainedModel\n",
|
811 |
+
"import flax.linen as nn\n",
|
812 |
+
"import jax.numpy as jnp\n",
|
813 |
+
"from transformers import GPT2Config\n",
|
814 |
+
"from transformers import FlaxGPT2PreTrainedModel\n",
|
815 |
+
"from transformers import FlaxGPT2Model\n",
|
816 |
+
"from transformers import GPT2Tokenizer\n",
|
817 |
+
"tokenizer = GPT2Tokenizer.from_pretrained(\"gpt2\",pad_token='<|endoftext|>')"
|
818 |
+
],
|
819 |
+
"execution_count": 2,
|
820 |
+
"outputs": [
|
821 |
+
{
|
822 |
+
"output_type": "display_data",
|
823 |
+
"data": {
|
824 |
+
"application/vnd.jupyter.widget-view+json": {
|
825 |
+
"model_id": "1b266a2c1cf646a392a46e39586282b3",
|
826 |
+
"version_minor": 0,
|
827 |
+
"version_major": 2
|
828 |
+
},
|
829 |
+
"text/plain": [
|
830 |
+
"HBox(children=(FloatProgress(value=0.0, description='Downloading', max=1042301.0, style=ProgressStyle(descript…"
|
831 |
+
]
|
832 |
+
},
|
833 |
+
"metadata": {
|
834 |
+
"tags": []
|
835 |
+
}
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"output_type": "stream",
|
839 |
+
"text": [
|
840 |
+
"\n"
|
841 |
+
],
|
842 |
+
"name": "stdout"
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"output_type": "display_data",
|
846 |
+
"data": {
|
847 |
+
"application/vnd.jupyter.widget-view+json": {
|
848 |
+
"model_id": "73c4b8bc05f64477aa03d767f4483795",
|
849 |
+
"version_minor": 0,
|
850 |
+
"version_major": 2
|
851 |
+
},
|
852 |
+
"text/plain": [
|
853 |
+
"HBox(children=(FloatProgress(value=0.0, description='Downloading', max=456318.0, style=ProgressStyle(descripti…"
|
854 |
+
]
|
855 |
+
},
|
856 |
+
"metadata": {
|
857 |
+
"tags": []
|
858 |
+
}
|
859 |
+
},
|
860 |
+
{
|
861 |
+
"output_type": "stream",
|
862 |
+
"text": [
|
863 |
+
"\n"
|
864 |
+
],
|
865 |
+
"name": "stdout"
|
866 |
+
},
|
867 |
+
{
|
868 |
+
"output_type": "display_data",
|
869 |
+
"data": {
|
870 |
+
"application/vnd.jupyter.widget-view+json": {
|
871 |
+
"model_id": "aa4d6e2e9ac44e9bb40b7daccc91ee83",
|
872 |
+
"version_minor": 0,
|
873 |
+
"version_major": 2
|
874 |
+
},
|
875 |
+
"text/plain": [
|
876 |
+
"HBox(children=(FloatProgress(value=0.0, description='Downloading', max=1355256.0, style=ProgressStyle(descript…"
|
877 |
+
]
|
878 |
+
},
|
879 |
+
"metadata": {
|
880 |
+
"tags": []
|
881 |
+
}
|
882 |
+
},
|
883 |
+
{
|
884 |
+
"output_type": "stream",
|
885 |
+
"text": [
|
886 |
+
"\n"
|
887 |
+
],
|
888 |
+
"name": "stdout"
|
889 |
+
}
|
890 |
+
]
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"cell_type": "code",
|
894 |
+
"metadata": {
|
895 |
+
"id": "GDokS6VEJI6C"
|
896 |
+
},
|
897 |
+
"source": [
|
898 |
+
"#inputs = tokenizer([\"JAX/Flax is amazing \",\"tensorflow is also good\"],[\"pytorch is better\",\"keras is the best\"],return_tensors='jax',padding='max_length',max_length=30)"
|
899 |
+
],
|
900 |
+
"execution_count": 3,
|
901 |
+
"outputs": []
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"cell_type": "code",
|
905 |
+
"metadata": {
|
906 |
+
"id": "hWiMk1TzyYim"
|
907 |
+
},
|
908 |
+
"source": [
|
909 |
+
"class FlaxGPT2ForMultipleChoiceModule(nn.Module):\n",
|
910 |
+
" config:GPT2Config\n",
|
911 |
+
" dtype: jnp.dtype = jnp.float32\n",
|
912 |
+
" def setup(self):\n",
|
913 |
+
" self.gpt2 = FlaxGPT2Model(config=self.config, dtype=self.dtype)\n",
|
914 |
+
" self.dropout = nn.Dropout(rate=0.2)\n",
|
915 |
+
" self.classifier = nn.Dense(4, dtype=self.dtype)\n",
|
916 |
+
"\n",
|
917 |
+
" def __call__(self,input_ids,attention_mask,position_ids,return_dict=True,deterministic=True,*args):\n",
|
918 |
+
" batch_size = input_ids.shape[0]\n",
|
919 |
+
"\n",
|
920 |
+
" rng=jax.random.PRNGKey(0)\n",
|
921 |
+
" _, dropout_rng = jax.random.split(rng)\n",
|
922 |
+
"\n",
|
923 |
+
" outputs=self.gpt2(input_ids, attention_mask,position_ids,return_dict=return_dict)\n",
|
924 |
+
" \n",
|
925 |
+
"\n",
|
926 |
+
" hidden_states = outputs[0]\n",
|
927 |
+
"\n",
|
928 |
+
" \n",
|
929 |
+
" hidden_states= jnp.mean(hidden_states, axis=1)\n",
|
930 |
+
"\n",
|
931 |
+
" print(hidden_states.shape)\n",
|
932 |
+
" \n",
|
933 |
+
" hidden_states=hidden_states.reshape(batch_size,-1) #(32,8,768)->(32,8*768)\n",
|
934 |
+
"\n",
|
935 |
+
" dropout_output = self.dropout(hidden_states,deterministic=deterministic,rng=dropout_rng)\n",
|
936 |
+
"\n",
|
937 |
+
" print(dropout_output.shape)\n",
|
938 |
+
"\n",
|
939 |
+
" logits = self.classifier(dropout_output)\n",
|
940 |
+
" reshaped_logits = logits.reshape(-1, 4) #(32,4)\n",
|
941 |
+
" if not return_dict:\n",
|
942 |
+
" return (reshaped_logits,) + outputs[2:]\n",
|
943 |
+
" return reshaped_logits"
|
944 |
+
],
|
945 |
+
"execution_count": 7,
|
946 |
+
"outputs": []
|
947 |
+
},
|
948 |
+
{
|
949 |
+
"cell_type": "code",
|
950 |
+
"metadata": {
|
951 |
+
"id": "u1j00Ck255BC"
|
952 |
+
},
|
953 |
+
"source": [
|
954 |
+
"class FlaxGPT2ForMultipleChoice(FlaxGPT2PreTrainedModel):\n",
|
955 |
+
" module_class = FlaxGPT2ForMultipleChoiceModule"
|
956 |
+
],
|
957 |
+
"execution_count": 8,
|
958 |
+
"outputs": []
|
959 |
+
},
|
960 |
+
{
|
961 |
+
"cell_type": "code",
|
962 |
+
"metadata": {
|
963 |
+
"id": "h2MrRgKTRxZO",
|
964 |
+
"colab": {
|
965 |
+
"base_uri": "https://localhost:8080/"
|
966 |
+
},
|
967 |
+
"outputId": "5a0fcc68-ca39-4df0-c854-734125d65f53"
|
968 |
+
},
|
969 |
+
"source": [
|
970 |
+
"model = FlaxGPT2ForMultipleChoice.from_pretrained('gpt2') # getting warning"
|
971 |
+
],
|
972 |
+
"execution_count": 9,
|
973 |
+
"outputs": [
|
974 |
+
{
|
975 |
+
"output_type": "stream",
|
976 |
+
"text": [
|
977 |
+
"(1, 768)\n",
|
978 |
+
"(1, 768)\n"
|
979 |
+
],
|
980 |
+
"name": "stdout"
|
981 |
+
},
|
982 |
+
{
|
983 |
+
"output_type": "stream",
|
984 |
+
"text": [
|
985 |
+
"Some weights of the model checkpoint at gpt2 were not used when initializing FlaxGPT2ForMultipleChoice: {('h', '1', 'ln_1', 'bias'), ('h', '6', 'ln_1', 'scale'), ('h', '1', 'attn', 'c_proj', 'kernel'), ('h', '11', 'mlp', 'c_fc', 'bias'), ('h', '7', 'ln_1', 'bias'), ('h', '5', 'ln_2', 'bias'), ('h', '10', 'ln_2', 'scale'), ('h', '4', 'mlp', 'c_proj', 'kernel'), ('h', '0', 'mlp', 'c_proj', 'bias'), ('h', '0', 'ln_1', 'bias'), ('h', '0', 'mlp', 'c_fc', 'kernel'), ('wpe', 'embedding'), ('h', '3', 'ln_1', 'scale'), ('h', '2', 'ln_1', 'scale'), ('h', '3', 'mlp', 'c_fc', 'kernel'), ('h', '7', 'ln_1', 'scale'), ('h', '8', 'mlp', 'c_proj', 'kernel'), ('h', '7', 'mlp', 'c_proj', 'kernel'), ('h', '3', 'ln_2', 'bias'), ('h', '9', 'attn', 'c_attn', 'kernel'), ('h', '0', 'mlp', 'c_fc', 'bias'), ('h', '3', 'attn', 'c_proj', 'bias'), ('h', '0', 'ln_1', 'scale'), ('h', '3', 'attn', 'c_attn', 'kernel'), ('h', '0', 'mlp', 'c_proj', 'kernel'), ('h', '5', 'ln_1', 'bias'), ('h', '7', 'attn', 'c_attn', 'bias'), ('h', '1', 'ln_2', 'bias'), ('h', '11', 'ln_2', 'scale'), ('h', '7', 'ln_2', 'bias'), ('h', '9', 'attn', 'c_proj', 'kernel'), ('h', '0', 'ln_2', 'bias'), ('h', '2', 'ln_2', 'scale'), ('h', '11', 'attn', 'c_attn', 'kernel'), ('h', '8', 'attn', 'c_proj', 'kernel'), ('h', '4', 'attn', 'c_attn', 'kernel'), ('h', '5', 'ln_1', 'scale'), ('h', '4', 'ln_1', 'bias'), ('h', '8', 'ln_2', 'bias'), ('h', '1', 'mlp', 'c_fc', 'kernel'), ('h', '9', 'ln_2', 'scale'), ('h', '1', 'mlp', 'c_proj', 'bias'), ('h', '2', 'mlp', 'c_proj', 'kernel'), ('h', '9', 'attn', 'c_proj', 'bias'), ('h', '11', 'ln_2', 'bias'), ('h', '6', 'mlp', 'c_proj', 'bias'), ('h', '3', 'ln_1', 'bias'), ('h', '1', 'attn', 'c_attn', 'kernel'), ('h', '9', 'ln_1', 'scale'), ('h', '10', 'attn', 'c_attn', 'bias'), ('h', '10', 'mlp', 'c_proj', 'kernel'), ('h', '2', 'attn', 'c_proj', 'kernel'), ('h', '0', 'attn', 'c_proj', 'kernel'), ('h', '6', 'attn', 'c_attn', 'kernel'), ('h', '4', 'mlp', 'c_fc', 'bias'), ('h', '3', 'attn', 'c_attn', 'bias'), ('h', '3', 'attn', 'c_proj', 'kernel'), ('h', '11', 'mlp', 'c_proj', 'bias'), ('h', '9', 'attn', 'c_attn', 'bias'), ('h', '7', 'mlp', 'c_proj', 'bias'), ('h', '7', 'mlp', 'c_fc', 'bias'), ('h', '6', 'attn', 'c_attn', 'bias'), ('h', '5', 'mlp', 'c_fc', 'kernel'), ('h', '0', 'attn', 'c_proj', 'bias'), ('h', '2', 'attn', 'c_proj', 'bias'), ('h', '10', 'attn', 'c_attn', 'kernel'), ('h', '10', 'mlp', 'c_proj', 'bias'), ('h', '1', 'attn', 'c_attn', 'bias'), ('h', '11', 'ln_1', 'bias'), ('h', '4', 'ln_2', 'bias'), ('h', '8', 'ln_1', 'bias'), ('h', '11', 'attn', 'c_proj', 'kernel'), ('h', '9', 'mlp', 'c_fc', 'kernel'), ('h', '7', 'ln_2', 'scale'), ('h', '9', 'mlp', 'c_proj', 'kernel'), ('h', '11', 'attn', 'c_attn', 'bias'), ('h', '10', 'mlp', 'c_fc', 'bias'), ('h', '6', 'attn', 'c_proj', 'kernel'), ('h', '0', 'ln_2', 'scale'), ('h', '2', 'ln_2', 'bias'), ('h', '3', 'mlp', 'c_proj', 'bias'), ('h', '5', 'mlp', 'c_proj', 'kernel'), ('h', '8', 'mlp', 'c_fc', 'bias'), ('h', '9', 'mlp', 'c_proj', 'bias'), ('h', '9', 'mlp', 'c_fc', 'bias'), ('h', '8', 'mlp', 'c_fc', 'kernel'), ('h', '9', 'ln_1', 'bias'), ('h', '10', 'ln_1', 'scale'), ('h', '6', 'ln_2', 'bias'), ('h', '2', 'mlp', 'c_fc', 'kernel'), ('h', '4', 'attn', 'c_proj', 'bias'), ('h', '1', 'ln_2', 'scale'), ('h', '5', 'mlp', 'c_fc', 'bias'), ('h', '7', 'mlp', 'c_fc', 'kernel'), ('h', '7', 'attn', 'c_proj', 'bias'), ('h', '5', 'attn', 'c_proj', 'kernel'), ('h', '2', 'mlp', 'c_fc', 'bias'), ('h', '6', 'ln_2', 'scale'), ('h', '11', 'ln_1', 'scale'), ('h', '4', 'mlp', 'c_fc', 'kernel'), ('h', '2', 'ln_1', 'bias'), ('h', '9', 'ln_2', 'bias'), ('h', '11', 'mlp', 'c_fc', 'kernel'), ('h', '1', 'attn', 'c_proj', 'bias'), ('h', '4', 'ln_2', 'scale'), ('h', '8', 'ln_1', 'scale'), ('h', '6', 'attn', 'c_proj', 'bias'), ('h', '5', 'attn', 'c_attn', 'kernel'), ('h', '3', 'ln_2', 'scale'), ('h', '8', 'attn', 'c_attn', 'bias'), ('h', '10', 'mlp', 'c_fc', 'kernel'), ('h', '1', 'ln_1', 'scale'), ('h', '10', 'attn', 'c_proj', 'bias'), ('h', '6', 'ln_1', 'bias'), ('h', '0', 'attn', 'c_attn', 'kernel'), ('wte', 'embedding'), ('h', '6', 'mlp', 'c_fc', 'kernel'), ('h', '4', 'attn', 'c_attn', 'bias'), ('h', '10', 'ln_2', 'bias'), ('h', '8', 'attn', 'c_proj', 'bias'), ('h', '11', 'attn', 'c_proj', 'bias'), ('h', '8', 'attn', 'c_attn', 'kernel'), ('h', '5', 'attn', 'c_attn', 'bias'), ('h', '5', 'ln_2', 'scale'), ('h', '2', 'attn', 'c_attn', 'bias'), ('ln_f', 'scale'), ('h', '7', 'attn', 'c_attn', 'kernel'), ('h', '4', 'ln_1', 'scale'), ('h', '8', 'ln_2', 'scale'), ('h', '11', 'mlp', 'c_proj', 'kernel'), ('h', '5', 'attn', 'c_proj', 'bias'), ('h', '7', 'attn', 'c_proj', 'kernel'), ('h', '8', 'mlp', 'c_proj', 'bias'), ('h', '3', 'mlp', 'c_fc', 'bias'), ('h', '10', 'ln_1', 'bias'), ('h', '2', 'attn', 'c_attn', 'kernel'), ('h', '6', 'mlp', 'c_proj', 'kernel'), ('h', '4', 'attn', 'c_proj', 'kernel'), ('h', '1', 'mlp', 'c_proj', 'kernel'), ('h', '2', 'mlp', 'c_proj', 'bias'), ('h', '1', 'mlp', 'c_fc', 'bias'), ('h', '4', 'mlp', 'c_proj', 'bias'), ('ln_f', 'bias'), ('h', '6', 'mlp', 'c_fc', 'bias'), ('h', '0', 'attn', 'c_attn', 'bias'), ('h', '10', 'attn', 'c_proj', 'kernel'), ('h', '5', 'mlp', 'c_proj', 'bias'), ('h', '3', 'mlp', 'c_proj', 'kernel')}\n",
|
986 |
+
"- This IS expected if you are initializing FlaxGPT2ForMultipleChoice from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
987 |
+
"- This IS NOT expected if you are initializing FlaxGPT2ForMultipleChoice from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
988 |
+
"Some weights of FlaxGPT2ForMultipleChoice were not initialized from the model checkpoint at gpt2 and are newly initialized: {('classifier', 'bias'), ('classifier', 'kernel')}\n",
|
989 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
990 |
+
],
|
991 |
+
"name": "stderr"
|
992 |
+
}
|
993 |
+
]
|
994 |
+
},
|
995 |
+
{
|
996 |
+
"cell_type": "code",
|
997 |
+
"metadata": {
|
998 |
+
"id": "CdSuQK9pRmw-"
|
999 |
+
},
|
1000 |
+
"source": [
|
1001 |
+
"input_ids=jnp.ones((4,5,6))\n",
|
1002 |
+
"attention_mask=jnp.ones((4,5,6))"
|
1003 |
+
],
|
1004 |
+
"execution_count": 10,
|
1005 |
+
"outputs": []
|
1006 |
+
},
|
1007 |
+
{
|
1008 |
+
"cell_type": "code",
|
1009 |
+
"metadata": {
|
1010 |
+
"id": "d3Bu38KTkwWs",
|
1011 |
+
"colab": {
|
1012 |
+
"base_uri": "https://localhost:8080/",
|
1013 |
+
"height": 300
|
1014 |
+
},
|
1015 |
+
"outputId": "5470ccc9-6d49-427c-ad8e-5162343acfde"
|
1016 |
+
},
|
1017 |
+
"source": [
|
1018 |
+
"out1 = model(input_ids, attention_mask) #GPT2 will not take (batch_size,num_choice,sequence_length)"
|
1019 |
+
],
|
1020 |
+
"execution_count": 11,
|
1021 |
+
"outputs": [
|
1022 |
+
{
|
1023 |
+
"output_type": "error",
|
1024 |
+
"ename": "ValueError",
|
1025 |
+
"evalue": "ignored",
|
1026 |
+
"traceback": [
|
1027 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
1028 |
+
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
|
1029 |
+
"\u001b[0;32m<ipython-input-11-7491141e6756>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mout1\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minput_ids\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mattention_mask\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m#GPT2 will not take (batch_size,num_choice,sequence_length)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
|
1030 |
+
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/transformers/models/gpt2/modeling_flax_gpt2.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, input_ids, attention_mask, position_ids, params, past_key_values, dropout_rng, train, output_attentions, output_hidden_states, return_dict)\u001b[0m\n\u001b[1;32m 370\u001b[0m \u001b[0mreturn_dict\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mreturn_dict\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mreturn_dict\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreturn_dict\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 371\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 372\u001b[0;31m \u001b[0mbatch_size\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msequence_length\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0minput_ids\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 373\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 374\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mposition_ids\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
1031 |
+
"\u001b[0;31mValueError\u001b[0m: too many values to unpack (expected 2)"
|
1032 |
+
]
|
1033 |
+
}
|
1034 |
+
]
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"cell_type": "code",
|
1038 |
+
"metadata": {
|
1039 |
+
"id": "VZPlQfkhgLJd",
|
1040 |
+
"colab": {
|
1041 |
+
"base_uri": "https://localhost:8080/"
|
1042 |
+
},
|
1043 |
+
"outputId": "7948688b-be77-4e9a-fc06-8644a2614d42"
|
1044 |
+
},
|
1045 |
+
"source": [
|
1046 |
+
"print(out1)"
|
1047 |
+
],
|
1048 |
+
"execution_count": null,
|
1049 |
+
"outputs": [
|
1050 |
+
{
|
1051 |
+
"output_type": "stream",
|
1052 |
+
"text": [
|
1053 |
+
"[[ 1.1391759 -0.01598702 0.55463445 0.36025363]\n",
|
1054 |
+
" [ 0.32208228 0.37667227 0.87823874 0.19541818]\n",
|
1055 |
+
" [ 0.76971424 0.7187787 0.68642044 -0.31461257]\n",
|
1056 |
+
" [ 1.2375658 0.03325981 0.00153449 0.12019679]]\n"
|
1057 |
+
],
|
1058 |
+
"name": "stdout"
|
1059 |
+
}
|
1060 |
+
]
|
1061 |
+
},
|
1062 |
+
{
|
1063 |
+
"cell_type": "code",
|
1064 |
+
"metadata": {
|
1065 |
+
"id": "fgkIcD-mZWP7"
|
1066 |
+
},
|
1067 |
+
"source": [
|
1068 |
+
""
|
1069 |
+
],
|
1070 |
+
"execution_count": null,
|
1071 |
+
"outputs": []
|
1072 |
+
}
|
1073 |
+
]
|
1074 |
+
}
|
Untitled330.ipynb
ADDED
@@ -0,0 +1,470 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"name": "Untitled330.ipynb",
|
7 |
+
"provenance": [],
|
8 |
+
"collapsed_sections": []
|
9 |
+
},
|
10 |
+
"kernelspec": {
|
11 |
+
"name": "python3",
|
12 |
+
"display_name": "Python 3"
|
13 |
+
},
|
14 |
+
"language_info": {
|
15 |
+
"name": "python"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
"cells": [
|
19 |
+
{
|
20 |
+
"cell_type": "code",
|
21 |
+
"metadata": {
|
22 |
+
"id": "Ii2x731Ta8fu"
|
23 |
+
},
|
24 |
+
"source": [
|
25 |
+
"%%capture\n",
|
26 |
+
"!pip install transformers\n",
|
27 |
+
"!pip install datasets\n",
|
28 |
+
"!pip install --upgrade git+https://github.com/google/flax.git"
|
29 |
+
],
|
30 |
+
"execution_count": 1,
|
31 |
+
"outputs": []
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"cell_type": "code",
|
35 |
+
"metadata": {
|
36 |
+
"id": "_9NMPFKua9hr"
|
37 |
+
},
|
38 |
+
"source": [
|
39 |
+
"import jax\n",
|
40 |
+
"from transformers.modeling_flax_utils import FlaxPreTrainedModel\n",
|
41 |
+
"import flax.linen as nn\n",
|
42 |
+
"import jax.numpy as jnp\n",
|
43 |
+
"from transformers import GPT2Config\n",
|
44 |
+
"#from transformers import FlaxGPT2PreTrainedModel\n",
|
45 |
+
"from transformers import FlaxGPT2Model\n",
|
46 |
+
"import jax.numpy as jnp\n",
|
47 |
+
"from transformers import GPT2Tokenizer\n",
|
48 |
+
"tokenizer = GPT2Tokenizer.from_pretrained(\"gpt2\",pad_token='<|endoftext|>') \n",
|
49 |
+
"from typing import Any, Optional, Tuple\n",
|
50 |
+
"from flax.core.frozen_dict import FrozenDict, unfreeze\n",
|
51 |
+
"from transformers import file_utils\n",
|
52 |
+
"from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward\n",
|
53 |
+
"from transformers.models.gpt2.modeling_flax_gpt2 import FlaxGPT2BlockCollection\n",
|
54 |
+
"from transformers.modeling_flax_outputs import FlaxBaseModelOutput"
|
55 |
+
],
|
56 |
+
"execution_count": null,
|
57 |
+
"outputs": []
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"cell_type": "code",
|
61 |
+
"metadata": {
|
62 |
+
"id": "dqkcoBOccszd"
|
63 |
+
},
|
64 |
+
"source": [
|
65 |
+
"GPT2_START_DOCSTRING = r\"\"\"\n",
|
66 |
+
" This model inherits from :class:`~transformers.FlaxPreTrainedModel`. Check the superclass documentation for the\n",
|
67 |
+
" generic methods the library implements for all its model (such as downloading or saving, resizing the input\n",
|
68 |
+
" embeddings, pruning heads etc.)\n",
|
69 |
+
" This model is also a Flax Linen `flax.nn.Module\n",
|
70 |
+
" <https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html>`__ subclass. Use it as a regular Flax\n",
|
71 |
+
" Module and refer to the Flax documentation for all matter related to general usage and behavior.\n",
|
72 |
+
" Finally, this model supports inherent JAX features such as:\n",
|
73 |
+
" - `Just-In-Time (JIT) compilation <https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit>`__\n",
|
74 |
+
" - `Automatic Differentiation <https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation>`__\n",
|
75 |
+
" - `Vectorization <https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap>`__\n",
|
76 |
+
" - `Parallelization <https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap>`__\n",
|
77 |
+
" Parameters:\n",
|
78 |
+
" config (:class:`~transformers.GPT2Config`): Model configuration class with all the parameters of the model.\n",
|
79 |
+
" Initializing with a config file does not load the weights associated with the model, only the\n",
|
80 |
+
" configuration. Check out the :meth:`~transformers.FlaxPreTrainedModel.from_pretrained` method to load the\n",
|
81 |
+
" model weights.\n",
|
82 |
+
"\"\"\"\n",
|
83 |
+
"\n",
|
84 |
+
"GPT2_INPUTS_DOCSTRING = r\"\"\"\n",
|
85 |
+
" Args:\n",
|
86 |
+
" input_ids (:obj:`numpy.ndarray` of shape :obj:`(batch_size,input_ids_length)`):\n",
|
87 |
+
" :obj:`input_ids_length` = ``sequence_length``. Indices of input sequence tokens in the vocabulary.\n",
|
88 |
+
" Indices can be obtained using :class:`~transformers.GPT2Tokenizer`. See\n",
|
89 |
+
" :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for\n",
|
90 |
+
" details.\n",
|
91 |
+
" `What are input IDs? <../glossary.html#input-ids>`__\n",
|
92 |
+
" attention_mask (:obj:`numpy.ndarray` of shape :obj:`(batch_size, sequence_length)`, `optional`):\n",
|
93 |
+
" Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:\n",
|
94 |
+
" - 1 for tokens that are **not masked**,\n",
|
95 |
+
" - 0 for tokens that are **masked**.\n",
|
96 |
+
" `What are attention masks? <../glossary.html#attention-mask>`__\n",
|
97 |
+
" position_ids (:obj:`numpy.ndarray` of shape :obj:`(batch_size, sequence_length)`, `optional`):\n",
|
98 |
+
" Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,\n",
|
99 |
+
" config.max_position_embeddings - 1]``.\n",
|
100 |
+
" past_key_values (:obj:`Dict[str, np.ndarray]`, `optional`, returned by ``init_cache`` or when passing previous ``past_key_values``):\n",
|
101 |
+
" Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast\n",
|
102 |
+
" auto-regressive decoding. Pre-computed key and value hidden-states are of shape `[batch_size, max_length]`.\n",
|
103 |
+
" output_attentions (:obj:`bool`, `optional`):\n",
|
104 |
+
" Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned\n",
|
105 |
+
" tensors for more detail.\n",
|
106 |
+
" output_hidden_states (:obj:`bool`, `optional`):\n",
|
107 |
+
" Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for\n",
|
108 |
+
" more detail.\n",
|
109 |
+
" return_dict (:obj:`bool`, `optional`):\n",
|
110 |
+
" Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.\n",
|
111 |
+
"\"\"\""
|
112 |
+
],
|
113 |
+
"execution_count": 3,
|
114 |
+
"outputs": []
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"cell_type": "code",
|
118 |
+
"metadata": {
|
119 |
+
"id": "NX-Z5iCMbKL5"
|
120 |
+
},
|
121 |
+
"source": [
|
122 |
+
"class FlaxGGGPreTrainedModel(FlaxPreTrainedModel):\n",
|
123 |
+
" \"\"\"\n",
|
124 |
+
" An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained\n",
|
125 |
+
" models.\n",
|
126 |
+
" \"\"\"\n",
|
127 |
+
"\n",
|
128 |
+
" config_class = GPT2Config\n",
|
129 |
+
" base_model_prefix = \"transformer\"\n",
|
130 |
+
" module_class: nn.Module = None\n",
|
131 |
+
"\n",
|
132 |
+
" def __init__(\n",
|
133 |
+
" self,\n",
|
134 |
+
" config: GPT2Config,\n",
|
135 |
+
" input_shape: Tuple = (1,1),\n",
|
136 |
+
" seed: int = 0,\n",
|
137 |
+
" dtype: jnp.dtype = jnp.float32,\n",
|
138 |
+
" **kwargs,\n",
|
139 |
+
" ):\n",
|
140 |
+
" \n",
|
141 |
+
" module = self.module_class(config=config, dtype=dtype, **kwargs)\n",
|
142 |
+
" super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype)\n",
|
143 |
+
"\n",
|
144 |
+
" def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple) -> FrozenDict:\n",
|
145 |
+
" # init input tensors\n",
|
146 |
+
" input_ids = jnp.zeros(input_shape, dtype=\"i4\")\n",
|
147 |
+
" attention_mask = jnp.ones_like(input_ids)\n",
|
148 |
+
" \n",
|
149 |
+
" position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)\n",
|
150 |
+
"\n",
|
151 |
+
" params_rng, dropout_rng = jax.random.split(rng)\n",
|
152 |
+
" rngs = {\"params\": params_rng, \"dropout\": dropout_rng}\n",
|
153 |
+
"\n",
|
154 |
+
" return self.module.init(rngs, input_ids, attention_mask, position_ids, return_dict=False)[\"params\"]\n",
|
155 |
+
"\n",
|
156 |
+
" def init_cache(self, batch_size, max_length):\n",
|
157 |
+
" r\"\"\"\n",
|
158 |
+
" Args:\n",
|
159 |
+
" batch_size (:obj:`int`):\n",
|
160 |
+
" batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.\n",
|
161 |
+
" max_length (:obj:`int`):\n",
|
162 |
+
" maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized\n",
|
163 |
+
" cache.\n",
|
164 |
+
" \"\"\"\n",
|
165 |
+
" # init input variables to retrieve cache\n",
|
166 |
+
" input_ids = jnp.ones((batch_size, max_length))\n",
|
167 |
+
" attention_mask = jnp.ones_like(input_ids)\n",
|
168 |
+
" position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)\n",
|
169 |
+
"\n",
|
170 |
+
" init_variables = self.module.init(\n",
|
171 |
+
" jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True\n",
|
172 |
+
" )\n",
|
173 |
+
" return init_variables[\"cache\"]\n",
|
174 |
+
"\n",
|
175 |
+
" @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)\n",
|
176 |
+
" def __call__(\n",
|
177 |
+
" self,\n",
|
178 |
+
" input_ids,\n",
|
179 |
+
" attention_mask=None,\n",
|
180 |
+
" position_ids=None,\n",
|
181 |
+
" params: dict = None,\n",
|
182 |
+
" past_key_values: dict = None,\n",
|
183 |
+
" dropout_rng: jax.random.PRNGKey = None,\n",
|
184 |
+
" train: bool = False,\n",
|
185 |
+
" output_attentions: Optional[bool] = None,\n",
|
186 |
+
" output_hidden_states: Optional[bool] = None,\n",
|
187 |
+
" return_dict: Optional[bool] = None,\n",
|
188 |
+
" ):\n",
|
189 |
+
" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions\n",
|
190 |
+
" output_hidden_states = (\n",
|
191 |
+
" output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states\n",
|
192 |
+
" )\n",
|
193 |
+
" return_dict = return_dict if return_dict is not None else self.config.return_dict\n",
|
194 |
+
" print(input_ids.shape)\n",
|
195 |
+
"\n",
|
196 |
+
" # batch_size, num_choices,sequence_length = input_ids.shape\n",
|
197 |
+
"\n",
|
198 |
+
" if position_ids is None:\n",
|
199 |
+
" if past_key_values is not None:\n",
|
200 |
+
" raise ValueError(\"Make sure to provide `position_ids` when passing `past_key_values`.\")\n",
|
201 |
+
" \n",
|
202 |
+
" position_ids=jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)\n",
|
203 |
+
"\n",
|
204 |
+
" # position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))\n",
|
205 |
+
"\n",
|
206 |
+
" if attention_mask is None:\n",
|
207 |
+
" attention_mask = jnp.ones((input_ids))\n",
|
208 |
+
" print('attn not')\n",
|
209 |
+
"\n",
|
210 |
+
" # Handle any PRNG if needed\n",
|
211 |
+
" rngs = {}\n",
|
212 |
+
" if dropout_rng is not None:\n",
|
213 |
+
" rngs[\"dropout\"] = dropout_rng\n",
|
214 |
+
"\n",
|
215 |
+
" inputs = {\"params\": params or self.params}\n",
|
216 |
+
"\n",
|
217 |
+
" # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be changed by FlaxGPT2Attention module\n",
|
218 |
+
" if past_key_values:\n",
|
219 |
+
" inputs[\"cache\"] = past_key_values\n",
|
220 |
+
" mutable = [\"cache\"]\n",
|
221 |
+
" else:\n",
|
222 |
+
" mutable = False\n",
|
223 |
+
"\n",
|
224 |
+
" outputs = self.module.apply(\n",
|
225 |
+
" inputs,\n",
|
226 |
+
" jnp.array(input_ids, dtype=\"i4\"),\n",
|
227 |
+
" jnp.array(attention_mask, dtype=\"i4\"),\n",
|
228 |
+
" jnp.array(position_ids, dtype=\"i4\"),\n",
|
229 |
+
" not train,\n",
|
230 |
+
" False,\n",
|
231 |
+
" output_attentions,\n",
|
232 |
+
" output_hidden_states,\n",
|
233 |
+
" return_dict,\n",
|
234 |
+
" rngs=rngs,\n",
|
235 |
+
" mutable=mutable,\n",
|
236 |
+
" )\n",
|
237 |
+
" print('cache')\n",
|
238 |
+
"\n",
|
239 |
+
" # add updated cache to model output\n",
|
240 |
+
" if past_key_values is not None and return_dict:\n",
|
241 |
+
" outputs, past_key_values = outputs\n",
|
242 |
+
" outputs[\"past_key_values\"] = unfreeze(past_key_values[\"cache\"])\n",
|
243 |
+
" return outputs\n",
|
244 |
+
" elif past_key_values is not None and not return_dict:\n",
|
245 |
+
" outputs, past_key_values = outputs\n",
|
246 |
+
" outputs = outputs[:1] + (unfreeze(past_key_values[\"cache\"]),) + outputs[1:]\n",
|
247 |
+
"\n",
|
248 |
+
" return outputs"
|
249 |
+
],
|
250 |
+
"execution_count": 6,
|
251 |
+
"outputs": []
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"cell_type": "code",
|
255 |
+
"metadata": {
|
256 |
+
"id": "4vRAWll2bwQQ"
|
257 |
+
},
|
258 |
+
"source": [
|
259 |
+
"class FlaxGGGModule(nn.Module):\n",
|
260 |
+
" config: GPT2Config\n",
|
261 |
+
" dtype: jnp.dtype = jnp.float32\n",
|
262 |
+
"\n",
|
263 |
+
" def setup(self):\n",
|
264 |
+
" self.embed_dim = self.config.hidden_size\n",
|
265 |
+
"\n",
|
266 |
+
" self.wte = nn.Embed(\n",
|
267 |
+
" self.config.vocab_size,\n",
|
268 |
+
" self.embed_dim,\n",
|
269 |
+
" embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),\n",
|
270 |
+
" dtype=self.dtype,\n",
|
271 |
+
" )\n",
|
272 |
+
" self.wpe = nn.Embed(\n",
|
273 |
+
" self.config.max_position_embeddings,\n",
|
274 |
+
" self.embed_dim,\n",
|
275 |
+
" embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),\n",
|
276 |
+
" dtype=self.dtype,\n",
|
277 |
+
" )\n",
|
278 |
+
" self.dropout = nn.Dropout(rate=self.config.embd_pdrop)\n",
|
279 |
+
" self.h = FlaxGPT2BlockCollection(self.config, dtype=self.dtype)\n",
|
280 |
+
" self.ln_f = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)\n",
|
281 |
+
"\n",
|
282 |
+
" def __call__(\n",
|
283 |
+
" self,\n",
|
284 |
+
" input_ids,\n",
|
285 |
+
" attention_mask,\n",
|
286 |
+
" position_ids,\n",
|
287 |
+
" deterministic=True,\n",
|
288 |
+
" init_cache: bool = False,\n",
|
289 |
+
" output_attentions: bool = False,\n",
|
290 |
+
" output_hidden_states: bool = False,\n",
|
291 |
+
" return_dict: bool = True,\n",
|
292 |
+
" ):\n",
|
293 |
+
" input_embeds = self.wte(input_ids.astype(\"i4\"))\n",
|
294 |
+
" position_embeds = self.wpe(position_ids.astype(\"i4\"))\n",
|
295 |
+
" \n",
|
296 |
+
"\n",
|
297 |
+
" hidden_states = input_embeds + position_embeds\n",
|
298 |
+
" hidden_states = self.dropout(hidden_states, deterministic=deterministic)\n",
|
299 |
+
" outputs = self.h(\n",
|
300 |
+
" hidden_states,\n",
|
301 |
+
" attention_mask,\n",
|
302 |
+
" deterministic=deterministic,\n",
|
303 |
+
" init_cache=init_cache,\n",
|
304 |
+
" output_attentions=output_attentions,\n",
|
305 |
+
" output_hidden_states=output_hidden_states,\n",
|
306 |
+
" return_dict=return_dict,\n",
|
307 |
+
" )\n",
|
308 |
+
"\n",
|
309 |
+
" hidden_states = outputs[0]\n",
|
310 |
+
" hidden_states = self.ln_f(hidden_states)\n",
|
311 |
+
" print('ggg')\n",
|
312 |
+
" if not return_dict:\n",
|
313 |
+
" return (hidden_states,) + outputs[1:]\n",
|
314 |
+
"\n",
|
315 |
+
" return FlaxBaseModelOutput(\n",
|
316 |
+
" last_hidden_state=hidden_states,\n",
|
317 |
+
" hidden_states=outputs.hidden_states,\n",
|
318 |
+
" attentions=outputs.attentions,)\n",
|
319 |
+
"class FlaxNewModel(FlaxGGGPreTrainedModel):\n",
|
320 |
+
" module_class = FlaxGGGModule"
|
321 |
+
],
|
322 |
+
"execution_count": 7,
|
323 |
+
"outputs": []
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"cell_type": "code",
|
327 |
+
"metadata": {
|
328 |
+
"id": "_ljSn6GdedtI"
|
329 |
+
},
|
330 |
+
"source": [
|
331 |
+
"class FlaxGPT2ForMultipleChoiceModule(nn.Module):\n",
|
332 |
+
" config:GPT2Config\n",
|
333 |
+
" dtype: jnp.dtype = jnp.float32\n",
|
334 |
+
" def setup(self):\n",
|
335 |
+
" self.gpt2 = FlaxNewModel(config=self.config, dtype=self.dtype)\n",
|
336 |
+
" self.dropout = nn.Dropout(rate=0.2)\n",
|
337 |
+
" self.classifier = nn.Dense(4, dtype=self.dtype)\n",
|
338 |
+
"\n",
|
339 |
+
" def __call__(self,input_ids,attention_mask,position_ids,return_dict=True,deterministic=True,*args):\n",
|
340 |
+
" batch_size = input_ids.shape[0]\n",
|
341 |
+
" rng=jax.random.PRNGKey(0)\n",
|
342 |
+
" _, dropout_rng = jax.random.split(rng)\n",
|
343 |
+
" print('abc')\n",
|
344 |
+
"\n",
|
345 |
+
" outputs=self.gpt2(input_ids, attention_mask,position_ids,return_dict=return_dict)\n",
|
346 |
+
" \n",
|
347 |
+
"\n",
|
348 |
+
" hidden_states = outputs[0]\n",
|
349 |
+
"\n",
|
350 |
+
" \n",
|
351 |
+
" hidden_states= jnp.mean(hidden_states, axis=1)\n",
|
352 |
+
"\n",
|
353 |
+
" print(hidden_states.shape)\n",
|
354 |
+
" \n",
|
355 |
+
" \n",
|
356 |
+
" hidden_states=hidden_states.reshape(batch_size,-1) #(32,8,768)->(32,8*768)\n",
|
357 |
+
"\n",
|
358 |
+
" dropout_output = self.dropout(hidden_states,deterministic=deterministic,rng=dropout_rng)\n",
|
359 |
+
"\n",
|
360 |
+
" print(dropout_output.shape)\n",
|
361 |
+
" \n",
|
362 |
+
"\n",
|
363 |
+
" logits = self.classifier(dropout_output)\n",
|
364 |
+
" print('bnv')\n",
|
365 |
+
" reshaped_logits = logits.reshape(-1, 4) \n",
|
366 |
+
" #(32,4)\n",
|
367 |
+
" if not return_dict:\n",
|
368 |
+
" return (reshaped_logits,) + outputs[2:]\n",
|
369 |
+
" return reshaped_logits"
|
370 |
+
],
|
371 |
+
"execution_count": 8,
|
372 |
+
"outputs": []
|
373 |
+
},
|
374 |
+
{
|
375 |
+
"cell_type": "code",
|
376 |
+
"metadata": {
|
377 |
+
"id": "M4UPf3Waexq0"
|
378 |
+
},
|
379 |
+
"source": [
|
380 |
+
"class FlaxGPT2ForMultipleChoice(FlaxNewModel):\n",
|
381 |
+
" module_class = FlaxGPT2ForMultipleChoiceModule"
|
382 |
+
],
|
383 |
+
"execution_count": 9,
|
384 |
+
"outputs": []
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"cell_type": "code",
|
388 |
+
"metadata": {
|
389 |
+
"id": "roQ3vls4e4TH"
|
390 |
+
},
|
391 |
+
"source": [
|
392 |
+
"model = FlaxGPT2ForMultipleChoice.from_pretrained('gpt2')"
|
393 |
+
],
|
394 |
+
"execution_count": null,
|
395 |
+
"outputs": []
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"cell_type": "code",
|
399 |
+
"metadata": {
|
400 |
+
"id": "E9qOSaaie417"
|
401 |
+
},
|
402 |
+
"source": [
|
403 |
+
"input_ids=jnp.ones((1,2,11))\n",
|
404 |
+
"attention_mask=jnp.ones((1,2,11))"
|
405 |
+
],
|
406 |
+
"execution_count": 12,
|
407 |
+
"outputs": []
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"cell_type": "code",
|
411 |
+
"metadata": {
|
412 |
+
"colab": {
|
413 |
+
"base_uri": "https://localhost:8080/",
|
414 |
+
"height": 409
|
415 |
+
},
|
416 |
+
"id": "am7hYv8auWVy",
|
417 |
+
"outputId": "0c8192ca-a0ab-432e-d483-46f8a2cc2576"
|
418 |
+
},
|
419 |
+
"source": [
|
420 |
+
"out1 = model(input_ids, attention_mask)"
|
421 |
+
],
|
422 |
+
"execution_count": 13,
|
423 |
+
"outputs": [
|
424 |
+
{
|
425 |
+
"output_type": "stream",
|
426 |
+
"text": [
|
427 |
+
"(1, 2, 11)\n",
|
428 |
+
"attn not\n",
|
429 |
+
"ggg\n",
|
430 |
+
"abc\n",
|
431 |
+
"(1, 2, 11)\n",
|
432 |
+
"attn not\n"
|
433 |
+
],
|
434 |
+
"name": "stdout"
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"output_type": "error",
|
438 |
+
"ename": "ValueError",
|
439 |
+
"evalue": "ignored",
|
440 |
+
"traceback": [
|
441 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
442 |
+
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
|
443 |
+
"\u001b[0;32m<ipython-input-13-6be36035677e>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mout1\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minput_ids\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mattention_mask\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
|
444 |
+
"\u001b[0;32m<ipython-input-6-de553f26d169>\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, input_ids, attention_mask, position_ids, params, past_key_values, dropout_rng, train, output_attentions, output_hidden_states, return_dict)\u001b[0m\n\u001b[1;32m 112\u001b[0m \u001b[0mreturn_dict\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 113\u001b[0m \u001b[0mrngs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mrngs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 114\u001b[0;31m \u001b[0mmutable\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmutable\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 115\u001b[0m )\n\u001b[1;32m 116\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'cache'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
445 |
+
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/flax/linen/module.py\u001b[0m in \u001b[0;36mapply\u001b[0;34m(self, variables, rngs, method, mutable, capture_intermediates, *args, **kwargs)\u001b[0m\n\u001b[1;32m 964\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 965\u001b[0m \u001b[0mmutable\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmutable\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcapture_intermediates\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcapture_intermediates\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 966\u001b[0;31m )(variables, *args, **kwargs, rngs=rngs)\n\u001b[0m\u001b[1;32m 967\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 968\u001b[0m def init_with_output(self,\n",
|
446 |
+
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/flax/core/scope.py\u001b[0m in \u001b[0;36mwrapper\u001b[0;34m(variables, rngs, *args, **kwargs)\u001b[0m\n\u001b[1;32m 685\u001b[0m **kwargs) -> Union[Any, Tuple[Any, VariableDict]]:\n\u001b[1;32m 686\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mbind\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvariables\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrngs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mrngs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmutable\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmutable\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtemporary\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mroot\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 687\u001b[0;31m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mroot\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 688\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mmutable\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 689\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mroot\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmutable_variables\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
447 |
+
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/flax/linen/module.py\u001b[0m in \u001b[0;36mscope_fn\u001b[0;34m(scope, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1214\u001b[0m \u001b[0m_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcapture_stack\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcapture_intermediates\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1215\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1216\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodule\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclone\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mparent\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mscope\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1217\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1218\u001b[0m \u001b[0m_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcapture_stack\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
448 |
+
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/flax/linen/module.py\u001b[0m in \u001b[0;36mwrapped_module_method\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 281\u001b[0m \u001b[0m_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodule_stack\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 282\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 283\u001b[0;31m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 284\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0m_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcapture_stack\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 285\u001b[0m \u001b[0mfilter_fn\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcapture_stack\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
449 |
+
"\u001b[0;32m<ipython-input-8-2c21e4c966c8>\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, input_ids, attention_mask, position_ids, return_dict, deterministic, *args)\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'abc'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 14\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 15\u001b[0;31m \u001b[0moutputs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgpt2\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minput_ids\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mattention_mask\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mposition_ids\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mreturn_dict\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mreturn_dict\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 16\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 17\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
450 |
+
"\u001b[0;32m<ipython-input-6-de553f26d169>\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, input_ids, attention_mask, position_ids, params, past_key_values, dropout_rng, train, output_attentions, output_hidden_states, return_dict)\u001b[0m\n\u001b[1;32m 112\u001b[0m \u001b[0mreturn_dict\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 113\u001b[0m \u001b[0mrngs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mrngs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 114\u001b[0;31m \u001b[0mmutable\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmutable\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 115\u001b[0m )\n\u001b[1;32m 116\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'cache'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
451 |
+
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/flax/linen/module.py\u001b[0m in \u001b[0;36mapply\u001b[0;34m(self, variables, rngs, method, mutable, capture_intermediates, *args, **kwargs)\u001b[0m\n\u001b[1;32m 964\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 965\u001b[0m \u001b[0mmutable\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmutable\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcapture_intermediates\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcapture_intermediates\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 966\u001b[0;31m )(variables, *args, **kwargs, rngs=rngs)\n\u001b[0m\u001b[1;32m 967\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 968\u001b[0m def init_with_output(self,\n",
|
452 |
+
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/flax/core/scope.py\u001b[0m in \u001b[0;36mwrapper\u001b[0;34m(variables, rngs, *args, **kwargs)\u001b[0m\n\u001b[1;32m 685\u001b[0m **kwargs) -> Union[Any, Tuple[Any, VariableDict]]:\n\u001b[1;32m 686\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mbind\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvariables\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrngs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mrngs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmutable\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmutable\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtemporary\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mroot\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 687\u001b[0;31m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mroot\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 688\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mmutable\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 689\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mroot\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmutable_variables\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
453 |
+
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/flax/linen/module.py\u001b[0m in \u001b[0;36mscope_fn\u001b[0;34m(scope, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1214\u001b[0m \u001b[0m_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcapture_stack\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcapture_intermediates\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1215\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1216\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodule\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclone\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mparent\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mscope\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1217\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1218\u001b[0m \u001b[0m_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcapture_stack\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
454 |
+
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/flax/linen/module.py\u001b[0m in \u001b[0;36mwrapped_module_method\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 281\u001b[0m \u001b[0m_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodule_stack\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 282\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 283\u001b[0;31m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 284\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0m_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcapture_stack\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 285\u001b[0m \u001b[0mfilter_fn\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcapture_stack\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
455 |
+
"\u001b[0;32m<ipython-input-7-b2eaa3f7b251>\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, input_ids, attention_mask, position_ids, deterministic, init_cache, output_attentions, output_hidden_states, return_dict)\u001b[0m\n\u001b[1;32m 47\u001b[0m \u001b[0moutput_attentions\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0moutput_attentions\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 48\u001b[0m \u001b[0moutput_hidden_states\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0moutput_hidden_states\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 49\u001b[0;31m \u001b[0mreturn_dict\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mreturn_dict\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 50\u001b[0m )\n\u001b[1;32m 51\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
456 |
+
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/flax/linen/module.py\u001b[0m in \u001b[0;36mwrapped_module_method\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 281\u001b[0m \u001b[0m_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodule_stack\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 282\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 283\u001b[0;31m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 284\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0m_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcapture_stack\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 285\u001b[0m \u001b[0mfilter_fn\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcapture_stack\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
457 |
+
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/transformers/models/gpt2/modeling_flax_gpt2.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, hidden_states, attention_mask, deterministic, init_cache, output_attentions, output_hidden_states, return_dict)\u001b[0m\n\u001b[1;32m 452\u001b[0m \u001b[0mdeterministic\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdeterministic\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 453\u001b[0m \u001b[0minit_cache\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0minit_cache\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 454\u001b[0;31m \u001b[0moutput_attentions\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0moutput_attentions\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 455\u001b[0m )\n\u001b[1;32m 456\u001b[0m \u001b[0mhidden_states\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlayer_outputs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
458 |
+
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/flax/linen/module.py\u001b[0m in \u001b[0;36mwrapped_module_method\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 281\u001b[0m \u001b[0m_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodule_stack\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 282\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 283\u001b[0;31m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 284\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0m_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcapture_stack\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 285\u001b[0m \u001b[0mfilter_fn\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcapture_stack\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
459 |
+
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/transformers/models/gpt2/modeling_flax_gpt2.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, hidden_states, attention_mask, deterministic, init_cache, output_attentions)\u001b[0m\n\u001b[1;32m 285\u001b[0m \u001b[0mdeterministic\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdeterministic\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 286\u001b[0m \u001b[0minit_cache\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0minit_cache\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 287\u001b[0;31m \u001b[0moutput_attentions\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0moutput_attentions\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 288\u001b[0m )\n\u001b[1;32m 289\u001b[0m \u001b[0;31m# residual connection\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
460 |
+
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/flax/linen/module.py\u001b[0m in \u001b[0;36mwrapped_module_method\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 281\u001b[0m \u001b[0m_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodule_stack\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 282\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 283\u001b[0;31m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 284\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0m_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcapture_stack\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 285\u001b[0m \u001b[0mfilter_fn\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcapture_stack\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
461 |
+
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/transformers/models/gpt2/modeling_flax_gpt2.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, hidden_states, attention_mask, deterministic, init_cache, output_attentions)\u001b[0m\n\u001b[1;32m 177\u001b[0m ):\n\u001b[1;32m 178\u001b[0m \u001b[0mqkv_out\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mc_attn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhidden_states\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 179\u001b[0;31m \u001b[0mquery\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mjnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msplit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mqkv_out\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 180\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 181\u001b[0m \u001b[0mquery\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_split_heads\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mquery\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
462 |
+
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/jax/_src/numpy/lax_numpy.py\u001b[0m in \u001b[0;36msplit\u001b[0;34m(ary, indices_or_sections, axis)\u001b[0m\n\u001b[1;32m 1806\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0m_wraps\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msplit\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1807\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0msplit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mary\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mindices_or_sections\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mint\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1808\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_split\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"split\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mary\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mindices_or_sections\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1809\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1810\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_split_on_axis\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp_fun\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
463 |
+
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/jax/_src/numpy/lax_numpy.py\u001b[0m in \u001b[0;36m_split\u001b[0;34m(op, ary, indices_or_sections, axis)\u001b[0m\n\u001b[1;32m 1798\u001b[0m + ((r + 1) * (part_size + 1) - 1)])\n\u001b[1;32m 1799\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1800\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"array split does not result in an equal division\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1801\u001b[0m \u001b[0mstarts\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mends\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mndim\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mary\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mshape\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mary\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1802\u001b[0m \u001b[0m_subval\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mlambda\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mv\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0msubvals\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mv\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
464 |
+
"\u001b[0;31mValueError\u001b[0m: array split does not result in an equal division"
|
465 |
+
]
|
466 |
+
}
|
467 |
+
]
|
468 |
+
}
|
469 |
+
]
|
470 |
+
}
|