{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d3931407cc0>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690139949413561174, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFLOa7/JU7y/8RvMvgYSIr52QcK+65ORv3M92D4tWSa/2auzPcO2qb+9dhQ+0EO2vyvSZL899jHAqDomP5THxzwhuO0+XzEUv03Xgj+BHMc+HDXRvljIK79wj4u/03muv70sKT+Ivdk+SNXUPlDzl7/uyce/k1uBvziZDD7LiL0+Mq6KvkxCwD87SIw+NZq7PqiU6b9twgBAg8ZMv1IHpT8v42O/IicQQKzEHD8r8Fk+0O4TP1YyM0CHM00/nCFQv6IwRL8SQbo/RVVUv6KeNz90scG/iL3ZPkjV1D41plc/vY53v0yUKb9fUcE+4iptPyfMLT+y/Z8/nYRgP78tH7/DULq/xqjhPi8kFD+qokA//vvRPmB8oj40Gic/yX1HPPmdmD83bdi+iMOKP9OtFTxm8SO/FG4DP351L7/62wS9vSwpP4i92T5I1dQ+NaZXP9oxAb+3ax2/lcXNPmqbOj9t8SG/9jY+vkehoD6EuFq/UkFIv49m+7/hql6/X9iMvM8tWb+74qQ+/W0AP7I11D/AkK8/Hp3YveclGj/K4/S/zN2Qv95aVD9Ip1C+q531vnSxwb+Ivdk+A/YZwDWmVz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACSCN42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAkcqjvQAAAABvR+e/AAAAAAWK9bwAAAAAHWXcPwAAAADvtdY9AAAAABBb5D8AAAAAF9ALvgAAAADEBeq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAW9uYtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDr/4rwAAAAAR2/jvwAAAADT0K29AAAAAJ+J6j8AAAAAgPu4vAAAAACIKds/AAAAALz25z0AAAAAN03tvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEYScbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIARVIk9AAAAAJCW9L8AAAAAfwKOvQAAAADLyt4/AAAAAM+O+D0AAAAAMgT7PwAAAAD4lwU+AAAAAPJ2AMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFrE42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAqt5HPAAAAAAm8PC/AAAAAEialj0AAAAA1ifyPwAAAAD8rkW9AAAAAK4i9D8AAAAAIEgAvgAAAADwi/6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIXBMbHZK4CMAWyUTegDjAF0lEdArUf0p7TlT3V9lChoBkdAir1AzpHI62gHTegDaAhHQK1LhOk+HJt1fZQoaAZHQIZLd5+pfhNoB03oA2gIR0CtUuaK1og3dX2UKGgGR0CFvw5WBBiTaAdN6ANoCEdArVb4QYk3THV9lChoBkdAidrMZP2wmmgHTegDaAhHQK1bUNWEK3N1fZQoaAZHQIYRizNUwSJoB03oA2gIR0CtXm1VghKUdX2UKGgGR0CGUK+A3DNyaAdN6ANoCEdArWTZrcj7h3V9lChoBkdAiV1m34Kx92gHTegDaAhHQK1p6qo60Y11fZQoaAZHQIZx7zTWoWJoB03oA2gIR0CtbOMZP2wndX2UKGgGR0CC+DLGJemfaAdN6ANoCEdArW8Wd/axo3V9lChoBkdAgi2Gt6ol2WgHTegDaAhHQK11U+j/Mnt1fZQoaAZHQIEFSeGwiaBoB03oA2gIR0CteLpaiblSdX2UKGgGR0CAm8P6sQumaAdN6ANoCEdArXudoxpL3HV9lChoBkdAgdJH0Cih4GgHTegDaAhHQK1+MCEpRXR1fZQoaAZHQISdsR3/xUhoB03oA2gIR0Cth056t1ZDdX2UKGgGR0CFVwOx0MgEaAdN6ANoCEdArYp4KF7D23V9lChoBkdAhfp4dQwbl2gHTegDaAhHQK2NAtOEdvN1fZQoaAZHQINLq26TW5JoB03oA2gIR0Ctjz0tRNypdX2UKGgGR0CDw+jBVMmGaAdN6ANoCEdArZWDH0btJHV9lChoBkdAg/IOh9LHuWgHTegDaAhHQK2Y3RCQcPx1fZQoaAZHQISXkvVVghNoB03oA2gIR0Ctm9Z/9YOldX2UKGgGR0CEjepPykKvaAdN6ANoCEdArZ+P+85CGHV9lChoBkdAgpz97ngYQGgHTegDaAhHQK2m5lGwzLx1fZQoaAZHQIv6LSThYNloB03oA2gIR0Ctqg02tMfzdX2UKGgGR0CGeP97WuoxaAdN6ANoCEdArayackMTe3V9lChoBkdAhnHgnMMZxmgHTegDaAhHQK2u2yE+Pil1fZQoaAZHQIVTbBbfP5ZoB03oA2gIR0CttLxfnfVJdX2UKGgGR0CNFOKyfL9uaAdN6ANoCEdArbh5ZGKAKHV9lChoBkdAhbrlBppN9GgHTegDaAhHQK28rpEhJRR1fZQoaAZHQJG9PJNj9XNoB03oA2gIR0Ctv+ci4axYdX2UKGgGR0CQOveQ+2VnaAdN6ANoCEdArcWJkI5YHXV9lChoBkdAkNWaPn0TUWgHTegDaAhHQK3Ifj9XLeR1fZQoaAZHQIy0ygyuZCxoB03oA2gIR0CtyvgCfYjCdX2UKGgGR0CSGlpFCswMaAdN6ANoCEdArc0pPZZjhHV9lChoBkdAjOCZIQOFxmgHTegDaAhHQK3S0Awwj+t1fZQoaAZHQIU1NHYpUgloB03oA2gIR0Ct15KzzErHdX2UKGgGR0CFm7UzbeuWaAdN6ANoCEdArdutsabWmXV9lChoBkdAjmUzcAR02mgHTegDaAhHQK3eCj/uLJl1fZQoaAZHQIZXFwm3OOdoB03oA2gIR0Ct47e717IDdX2UKGgGR0CPjlysjmjkaAdN6ANoCEdArebHR/mT1XV9lChoBkdAkkaArxy4nWgHTegDaAhHQK3pM9f1Hvt1fZQoaAZHQIdjja0x/NJoB03oA2gIR0Ct61ej2zv7dX2UKGgGR0CKyVg5R0lraAdN6ANoCEdArfIz1dxAB3V9lChoBkdAhivTIV/MGGgHTegDaAhHQK33ciEg4fh1fZQoaAZHQJUlxPAO8TVoB03oA2gIR0Ct+hciW3SbdX2UKGgGR0CFt93TNMXaaAdN6ANoCEdArfyCoGY8dXV9lChoBkdAg5DL9/BnBmgHTegDaAhHQK4Cgd8zAN51fZQoaAZHQI2g0fA9FF5oB03oA2gIR0CuBZvi1iOOdX2UKGgGR0CRkNXfIjnnaAdN6ANoCEdArggTQ9ic5XV9lChoBkdAhHZD3VTaTWgHTegDaAhHQK4KP57gKnh1fZQoaAZHQIU1bzTWoWJoB03oA2gIR0CuEwc6/7BPdX2UKGgGR0CISUH446wMaAdN6ANoCEdArhY+21D0DnV9lChoBkdAiyR3PzFuN2gHTegDaAhHQK4Y5Xo1UER1fZQoaAZHQIc+IKWszVNoB03oA2gIR0CuGzcZccENdX2UKGgGR0CKh1MFEAo5aAdN6ANoCEdAriE6+zt1IXV9lChoBkdAi90SprDZUWgHTegDaAhHQK4kVhiLEUF1fZQoaAZHQIZH07OmixpoB03oA2gIR0CuJtWGZeAvdX2UKGgGR0CP8OQ176YWaAdN6ANoCEdArioBxzaK13V9lChoBkdAkNzgQHzH0mgHTegDaAhHQK4xnrnkkrx1fZQoaAZHQJG3EXj2i+NoB03oA2gIR0CuNJoWP91mdX2UKGgGR0COaldHlOoHaAdN6ANoCEdArjcFcdHUdHV9lChoBkdAjsqRmTTvzGgHTegDaAhHQK45E/7iyY51fZQoaAZHQJN2AkVvddpoB03oA2gIR0CuPpqxC6YmdX2UKGgGR0CROXJMQEpzaAdN6ANoCEdArkGSkXUH6nV9lChoBkdAlqKJSR8tw2gHTegDaAhHQK5EX65XlsB1fZQoaAZHQJVAXIq9XcRoB03oA2gIR0CuR5bKJVKgdX2UKGgGR0CT1lUAT7EYaAdN6ANoCEdArk51k1/DtXV9lChoBkdAkrYC88La3GgHTegDaAhHQK5RTyFPBSF1fZQoaAZHQJLrl8NQTEloB03oA2gIR0CuU6Fj/dZadX2UKGgGR0CSg3njhky2aAdN6ANoCEdArlW5lUZNwnV9lChoBkdAkyOM/hVENWgHTegDaAhHQK5bSbVjI7x1fZQoaAZHQIym1/MGHHpoB03oA2gIR0CuXjnkT6BRdX2UKGgGR0CP9mM6RyOraAdN6ANoCEdArmGLcmBvrHV9lChoBkdAj48ldkauOmgHTegDaAhHQK5k66BAfMh1fZQoaAZHQJK72Bd2PktoB03oA2gIR0Cua2KjBVMmdX2UKGgGR0CTNg5U96kZaAdN6ANoCEdArm5b7O3UhHV9lChoBkdAki5iBwuM/GgHTegDaAhHQK5xCKYzBRB1fZQoaAZHQJSdwb+98JFoB03oA2gIR0CudEHWBjFydX2UKGgGR0CR5SDJU5uJaAdN6ANoCEdArnu6HRCx/3V9lChoBkdAlA7Y9LYf4mgHTegDaAhHQK6AWaisXBR1fZQoaAZHQJOF4uanaWZoB03oA2gIR0Cug7WmpEQYdX2UKGgGR0CSxsnqFAVxaAdN6ANoCEdAroXESIxgzHV9lChoBkdAlO4zKPn0TWgHTegDaAhHQK6LHnWattB1fZQoaAZHQJRYWuW8h9toB03oA2gIR0CujfinxaxHdX2UKGgGR0CSEuqrzXjEaAdN6ANoCEdArpBfYcvM83V9lChoBkdAj2uq2a2F4GgHTegDaAhHQK6SgawUxmF1fZQoaAZHQJQ1zEIgNgBoB03oA2gIR0CumRBOYYzjdX2UKGgGR0CWG3h3JPqLaAdN6ANoCEdArqEIssg+yXV9lChoBkdAltIZJTVDr2gHTegDaAhHQK6jemrsByV1fZQoaAZHQJUmVW0Z3s5oB03oA2gIR0CupZf2Cdz5dX2UKGgGR0CS87Wa+evqaAdN6ANoCEdArqsoAsCkoHV9lChoBkdAlP5GzOX3QGgHTegDaAhHQK6uCD+R5kd1fZQoaAZHQJNJOHTI/7loB03oA2gIR0CusHWmP5pKdX2UKGgGR0CV/liiZfD2aAdN6ANoCEdArrKd2C/XXnV9lChoBkdAhC7IyTINmWgHTegDaAhHQK67JomG/N91fZQoaAZHQJJZZWGRFJBoB03oA2gIR0CuvlJCBwuNdX2UKGgGR0CTUysvIwM6aAdN6ANoCEdArsCvI6r/83V9lChoBkdAlN1owudwvWgHTegDaAhHQK7C5k92X9l1fZQoaAZHQIMFeY+jdpJoB03oA2gIR0CuyHFZPl+3dX2UKGgGR0CVEsBkqc3EaAdN6ANoCEdArstgnpjc23VlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}