File size: 15,601 Bytes
d7d0f62
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7d43b8c1b0a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d43b8c16a80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000192, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690187950117424212, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA3fVxP+QyRD82ZnY/aR7Vvtq1qj/n/mY/JIq1PpoKBz+H9Ya/ES82P8O7Q76QP/4+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUsikP8XkdD98NV4/KJ4Hv+DVwz+K5Vc/WkrhPp52CT8iKoq/I52AP95mA79PwIQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADd9XE/5DJEPzZmdj9o8bq+8Jy5P0PXpT9pHtW+2rWqP+f+Zj+L5vi/9pG7vyklgr4kirU+mgoHP4f1hr9npx2/W6CiP5zloj8RLzY/w7tDvpA//j5G36G+hJ3Pvdwz2T+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.9451578   0.7664015   0.9624971 ]\n [-0.41624764  1.3336747   0.902327  ]\n [ 0.35456955  0.5275055  -1.0543679 ]\n [ 0.7116557  -0.19114594  0.4965787 ]]", "desired_goal": "[[ 1.2873633   0.95661575  0.8680036 ]\n [-0.529757    1.5299644   0.84334624]\n [ 0.44002038  0.5369662  -1.0794108 ]\n [ 1.0047954  -0.5132884   0.2592797 ]]", "observation": "[[ 0.9451578   0.7664015   0.9624971  -0.36512303  1.4501019   1.2956318 ]\n [-0.41624764  1.3336747   0.902327   -1.9445356  -1.4653919  -0.25418976]\n [ 0.35456955  0.5275055  -1.0543679  -0.6158356   1.2705187   1.2726321 ]\n [ 0.7116557  -0.19114594  0.4965787  -0.31615657 -0.10137466  1.6968951 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVZ/OPRAnPL1JDoU9BV0GvqLmZb2fOKk9xRKvPe/bFT5S2/M9xecVvQZ4oL06F4M+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]", "desired_goal": "[[ 0.10088984 -0.04593569  0.06496865]\n [-0.13121422 -0.05612815  0.08262753]\n [ 0.08548502  0.1463468   0.11907066]\n [-0.03659799 -0.07835393  0.25603658]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": -0.00019199999999996997, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5NpQMc4fAcCUhpRSlIwBbJRLMowBdJRHQKFbTHMlkYp1fZQoaAZoCWgPQwhdGr/wSnIBwJSGlFKUaBVLMmgWR0ChWw95yEL6dX2UKGgGaAloD0MIA5fHmpFB/b+UhpRSlGgVSzJoFkdAoVrUUZeiSXV9lChoBmgJaA9DCGXequtQTfy/lIaUUpRoFUsyaBZHQKFalgGbCrN1fZQoaAZoCWgPQwhVE0TdB2D7v5SGlFKUaBVLMmgWR0ChXKTvRZ2ZdX2UKGgGaAloD0MI33AfuTXp+r+UhpRSlGgVSzJoFkdAoVxo2n8893V9lChoBmgJaA9DCByastMPavu/lIaUUpRoFUsyaBZHQKFcLbkfcN91fZQoaAZoCWgPQwhfmbfqOlT+v5SGlFKUaBVLMmgWR0ChW+9/axoqdX2UKGgGaAloD0MIZqGd0yyQ/L+UhpRSlGgVSzJoFkdAoV2v+hoM8nV9lChoBmgJaA9DCNL+B1irtvW/lIaUUpRoFUsyaBZHQKFdcfuCwr11fZQoaAZoCWgPQwi0BYTWw9f7v5SGlFKUaBVLMmgWR0ChXTZJTVDsdX2UKGgGaAloD0MIm1q21hcJ/r+UhpRSlGgVSzJoFkdAoVz3hwVCX3V9lChoBmgJaA9DCOEJvf4kvvy/lIaUUpRoFUsyaBZHQKFefLjghr51fZQoaAZoCWgPQwhFKowtBPn8v5SGlFKUaBVLMmgWR0ChXj8580DVdX2UKGgGaAloD0MIXALwT6nS/b+UhpRSlGgVSzJoFkdAoV4Dwc5sCXV9lChoBmgJaA9DCJw1eF+Vi/+/lIaUUpRoFUsyaBZHQKFdxPmgam51fZQoaAZoCWgPQwjvqDEh5vICwJSGlFKUaBVLMmgWR0ChX1HfEXLvdX2UKGgGaAloD0MIB5eOOc84A8CUhpRSlGgVSzJoFkdAoV8T0xubZ3V9lChoBmgJaA9DCNS5opQQ7P+/lIaUUpRoFUsyaBZHQKFe2CcPOIJ1fZQoaAZoCWgPQwgKn62Dgz0AwJSGlFKUaBVLMmgWR0ChXplsguAadX2UKGgGaAloD0MItFiK5CvB/b+UhpRSlGgVSzJoFkdAoWAi7oSteXV9lChoBmgJaA9DCFwea0YG+f6/lIaUUpRoFUsyaBZHQKFf5PhybQV1fZQoaAZoCWgPQwjqBZ/m5MX5v5SGlFKUaBVLMmgWR0ChX6k2gnMMdX2UKGgGaAloD0MI/9DMk2tqAMCUhpRSlGgVSzJoFkdAoV9qWX1J2HV9lChoBmgJaA9DCPzHQnQIvADAlIaUUpRoFUsyaBZHQKFg9ysCDEp1fZQoaAZoCWgPQwg+kpIehpb/v5SGlFKUaBVLMmgWR0ChYLksBhhIdX2UKGgGaAloD0MIZFkw8UeR+r+UhpRSlGgVSzJoFkdAoWB9cY64lXV9lChoBmgJaA9DCPs726M3XPq/lIaUUpRoFUsyaBZHQKFgPphWo3t1fZQoaAZoCWgPQwh1kxgEVo74v5SGlFKUaBVLMmgWR0ChYclrl/6PdX2UKGgGaAloD0MIE9VbA1sl/b+UhpRSlGgVSzJoFkdAoWGLXpW3jXV9lChoBmgJaA9DCPrPmh9/SQDAlIaUUpRoFUsyaBZHQKFhT6YVqN91fZQoaAZoCWgPQwjYR6eufFb4v5SGlFKUaBVLMmgWR0ChYRDQiRnwdX2UKGgGaAloD0MIdVYL7DFR+b+UhpRSlGgVSzJoFkdAoWKQRqXWv3V9lChoBmgJaA9DCL39uWjIOPy/lIaUUpRoFUsyaBZHQKFiUjQiRnx1fZQoaAZoCWgPQwi/nUSEf1EEwJSGlFKUaBVLMmgWR0ChYhZimVJMdX2UKGgGaAloD0MILa9cb5sp/L+UhpRSlGgVSzJoFkdAoWHXrGBFu3V9lChoBmgJaA9DCBstB3qoDQHAlIaUUpRoFUsyaBZHQKFjYXXRPXV1fZQoaAZoCWgPQwif508b1akCwJSGlFKUaBVLMmgWR0ChYyOE/SpjdX2UKGgGaAloD0MIi/7QzJOr/L+UhpRSlGgVSzJoFkdAoWLn5ckdFXV9lChoBmgJaA9DCLtiRnh78ADAlIaUUpRoFUsyaBZHQKFiqS2Yv391fZQoaAZoCWgPQwgZ4lgXtxEAwJSGlFKUaBVLMmgWR0ChZDwtJ4B4dX2UKGgGaAloD0MIc4OhDitc97+UhpRSlGgVSzJoFkdAoWP+cSXdCXV9lChoBmgJaA9DCFD/WfPjL/u/lIaUUpRoFUsyaBZHQKFjwssg+yJ1fZQoaAZoCWgPQwioN6Pmq+T/v5SGlFKUaBVLMmgWR0ChY4QV9F4LdX2UKGgGaAloD0MI3QphNZZw+7+UhpRSlGgVSzJoFkdAoWUczdk8R3V9lChoBmgJaA9DCMwJ2uTwifu/lIaUUpRoFUsyaBZHQKFk3vc8DCB1fZQoaAZoCWgPQwhdhv90A8X3v5SGlFKUaBVLMmgWR0ChZKNkWhysdX2UKGgGaAloD0MIsAPnjCit97+UhpRSlGgVSzJoFkdAoWRkwlByCHV9lChoBmgJaA9DCLXhsDTw4/i/lIaUUpRoFUsyaBZHQKFl9mWdEst1fZQoaAZoCWgPQwg+CAH5Eir5v5SGlFKUaBVLMmgWR0ChZbhtk4FSdX2UKGgGaAloD0MIyZBj6xkC+r+UhpRSlGgVSzJoFkdAoWV8ygwoLHV9lChoBmgJaA9DCE/nilJC8Pa/lIaUUpRoFUsyaBZHQKFlPgMMI/t1fZQoaAZoCWgPQwgwuOaO/tf5v5SGlFKUaBVLMmgWR0ChZuj7655JdX2UKGgGaAloD0MIgjekUYHT97+UhpRSlGgVSzJoFkdAoWarMqz7dnV9lChoBmgJaA9DCGjNj7+0qPm/lIaUUpRoFUsyaBZHQKFmb9Nvfj11fZQoaAZoCWgPQwiNmNnnMYr4v5SGlFKUaBVLMmgWR0ChZjHOKO1fdX2UKGgGaAloD0MI19zR/3LNAMCUhpRSlGgVSzJoFkdAoWfN1EE1VHV9lChoBmgJaA9DCLkWLUDb6gHAlIaUUpRoFUsyaBZHQKFnj/iHZbp1fZQoaAZoCWgPQwjFq6xtisf+v5SGlFKUaBVLMmgWR0ChZ1RhMJyAdX2UKGgGaAloD0MIGHsvvmhP/7+UhpRSlGgVSzJoFkdAoWcVmBe5WnV9lChoBmgJaA9DCA8pBkg0wfi/lIaUUpRoFUsyaBZHQKForiGWUr11fZQoaAZoCWgPQwgIlE25wtsBwJSGlFKUaBVLMmgWR0ChaHDDTBqLdX2UKGgGaAloD0MIsYnMXODy9r+UhpRSlGgVSzJoFkdAoWg13pwCKnV9lChoBmgJaA9DCDRo6J/gIvi/lIaUUpRoFUsyaBZHQKFn+FOfukV1fZQoaAZoCWgPQwjswg/Op478v5SGlFKUaBVLMmgWR0ChaY9znzQNdX2UKGgGaAloD0MI100pr5VwAMCUhpRSlGgVSzJoFkdAoWlReLNwBHV9lChoBmgJaA9DCKLtmLoru/e/lIaUUpRoFUsyaBZHQKFpFcNYr8R1fZQoaAZoCWgPQwhQVDasqWz/v5SGlFKUaBVLMmgWR0ChaNb+1jRVdX2UKGgGaAloD0MI46jcRC3N+b+UhpRSlGgVSzJoFkdAoWp2MVDa5HV9lChoBmgJaA9DCJTCvMeZpv2/lIaUUpRoFUsyaBZHQKFqODgZTAF1fZQoaAZoCWgPQwjqIK8Hk2L4v5SGlFKUaBVLMmgWR0ChafyUcGTtdX2UKGgGaAloD0MIQL0ZNV9l/b+UhpRSlGgVSzJoFkdAoWm92LYPG3V9lChoBmgJaA9DCDKuuDgqN/6/lIaUUpRoFUsyaBZHQKFrR5UtI091fZQoaAZoCWgPQwjNsFHWb+YAwJSGlFKUaBVLMmgWR0ChawmfPHDKdX2UKGgGaAloD0MI7KS+LO0U/b+UhpRSlGgVSzJoFkdAoWrN8iOea3V9lChoBmgJaA9DCMwolltazf6/lIaUUpRoFUsyaBZHQKFqjzCk43p1fZQoaAZoCWgPQwhYA5SGGgX+v5SGlFKUaBVLMmgWR0ChbBU5MlC1dX2UKGgGaAloD0MIcoqO5PIf/r+UhpRSlGgVSzJoFkdAoWvXIuGsWHV9lChoBmgJaA9DCMQI4dHGUf+/lIaUUpRoFUsyaBZHQKFrm1rIo3J1fZQoaAZoCWgPQwjPhCaJJWX7v5SGlFKUaBVLMmgWR0Cha1yB06o3dX2UKGgGaAloD0MICoFc4sjD/7+UhpRSlGgVSzJoFkdAoWzrC+De03V9lChoBmgJaA9DCPUSY5l+yfe/lIaUUpRoFUsyaBZHQKFsrRceKbd1fZQoaAZoCWgPQwg/qIsUygL/v5SGlFKUaBVLMmgWR0ChbHFkQPI5dX2UKGgGaAloD0MIoUs49BYvAMCUhpRSlGgVSzJoFkdAoWwyol2NenV9lChoBmgJaA9DCFr1udqKPfu/lIaUUpRoFUsyaBZHQKFtuOMERrd1fZQoaAZoCWgPQwhuUPutnegAwJSGlFKUaBVLMmgWR0ChbXsMI/qxdX2UKGgGaAloD0MIMnbCS3Dq/b+UhpRSlGgVSzJoFkdAoW0/ReC04XV9lChoBmgJaA9DCFWEm4wqw/u/lIaUUpRoFUsyaBZHQKFtAHwgDA91fZQoaAZoCWgPQwiz0w/qIkX4v5SGlFKUaBVLMmgWR0ChboAVO9FndX2UKGgGaAloD0MIMxXikXh5+b+UhpRSlGgVSzJoFkdAoW5B/3Fkx3V9lChoBmgJaA9DCFwAGqVLv/6/lIaUUpRoFUsyaBZHQKFuBj7yhBZ1fZQoaAZoCWgPQwgEIO7qVaT9v5SGlFKUaBVLMmgWR0Chbcdi2DxtdX2UKGgGaAloD0MIm3RbIhccAMCUhpRSlGgVSzJoFkdAoW9Sk690zXV9lChoBmgJaA9DCEA08+Sawvy/lIaUUpRoFUsyaBZHQKFvFIS13MZ1fZQoaAZoCWgPQwhf7L34on38v5SGlFKUaBVLMmgWR0ChbtjIBBAwdX2UKGgGaAloD0MIBvLs8q0PAMCUhpRSlGgVSzJoFkdAoW6Z8hLXc3V9lChoBmgJaA9DCBps6jwqfv2/lIaUUpRoFUsyaBZHQKFwHn7pFCt1fZQoaAZoCWgPQwiuuaP/5Vr+v5SGlFKUaBVLMmgWR0Chb+CJ40MxdX2UKGgGaAloD0MI73N8tDjjAcCUhpRSlGgVSzJoFkdAoW+k4ecQRXV9lChoBmgJaA9DCM5xbhPulfS/lIaUUpRoFUsyaBZHQKFvZhIe5nV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3907, "n_steps": 64, "gamma": 0.95, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True  True  True]", "bounded_above": "[ True  True  True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}