Vladislav-HuggingFace
commited on
Commit
•
2c8001e
1
Parent(s):
79c7936
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -3.07 +/- 1.62
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e33a73267c44c482a52add5614a894ed993b11acce3d4ab5a4a2597f07ef76d8
|
3 |
+
size 108121
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7d39314245e0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7d3931407e00>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1690145646284873006,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAfsDEPnvA6jt/7xQ/fsDEPnvA6jt/7xQ/fsDEPnvA6jt/7xQ/fsDEPnvA6jt/7xQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMnZqPwD5ez4KCNq/5CpzP7oEvD+wXEo/bdZePY16Ij/LCqS/48OlPjD8PL8vSae/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB+wMQ+e8DqO3/vFD9NJP87ojweOT/yMTx+wMQ+e8DqO3/vFD9NJP87ojweOT/yMTx+wMQ+e8DqO3/vFD9NJP87ojweOT/yMTx+wMQ+e8DqO3/vFD9NJP87ojweOT/yMTyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.3842811 0.00716406 0.5817794 ]\n [0.3842811 0.00716406 0.5817794 ]\n [0.3842811 0.00716406 0.5817794 ]\n [0.3842811 0.00716406 0.5817794 ]]",
|
38 |
+
"desired_goal": "[[ 0.915866 0.24606705 -1.7033703 ]\n [ 0.9498732 1.4688942 0.7904768 ]\n [ 0.05440371 0.6346825 -1.2815794 ]\n [ 0.32376012 -0.7382231 -1.3069209 ]]",
|
39 |
+
"observation": "[[3.8428110e-01 7.1640587e-03 5.8177942e-01 7.7863098e-03 1.5090642e-04\n 1.0860979e-02]\n [3.8428110e-01 7.1640587e-03 5.8177942e-01 7.7863098e-03 1.5090642e-04\n 1.0860979e-02]\n [3.8428110e-01 7.1640587e-03 5.8177942e-01 7.7863098e-03 1.5090642e-04\n 1.0860979e-02]\n [3.8428110e-01 7.1640587e-03 5.8177942e-01 7.7863098e-03 1.5090642e-04\n 1.0860979e-02]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAeo7hvUk+ajxBikI+McQOPZoIdT15bpU+N4QJvtdLmT1q3Iw+ZKXYPSVdD73/FGs+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.11013503 0.01429708 0.18998052]\n [ 0.03485507 0.05982266 0.29185846]\n [-0.13429342 0.07485168 0.27511913]\n [ 0.10578421 -0.03500094 0.22957228]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYk1lUdilCsCUhpRSlIwBbJRLMowBdJRHQKihgo6S1Vp1fZQoaAZoCWgPQwhR3Vz8bQ8WwJSGlFKUaBVLMmgWR0CooSClabF1dX2UKGgGaAloD0MIdELooEvYBMCUhpRSlGgVSzJoFkdAqKC1RNyo43V9lChoBmgJaA9DCIl46/zb5fm/lIaUUpRoFUsyaBZHQKigP5i3G4t1fZQoaAZoCWgPQwg9EFmkifcBwJSGlFKUaBVLMmgWR0Coo+krPMSsdX2UKGgGaAloD0MInrex2ZGqCMCUhpRSlGgVSzJoFkdAqKOHapPykXV9lChoBmgJaA9DCKDf929efA7AlIaUUpRoFUsyaBZHQKijHhLGrCF1fZQoaAZoCWgPQwgPml33VuQNwJSGlFKUaBVLMmgWR0CooqiiAUcodX2UKGgGaAloD0MIMQxYchWLD8CUhpRSlGgVSzJoFkdAqKZF67dzn3V9lChoBmgJaA9DCCr/Wl65nhLAlIaUUpRoFUsyaBZHQKil49hZyMl1fZQoaAZoCWgPQwhUrYVZaKcPwJSGlFKUaBVLMmgWR0CopXiblRxcdX2UKGgGaAloD0MIhSSzeofb7r+UhpRSlGgVSzJoFkdAqKUDFl05l3V9lChoBmgJaA9DCKJinL8JhQTAlIaUUpRoFUsyaBZHQKioG3BpHqh1fZQoaAZoCWgPQwgFFytqMB0WwJSGlFKUaBVLMmgWR0Cop7mXw9aEdX2UKGgGaAloD0MI1o7iHHXUAsCUhpRSlGgVSzJoFkdAqKdN2FFlTXV9lChoBmgJaA9DCGnhsgqbAf+/lIaUUpRoFUsyaBZHQKim1/Yrauh1fZQoaAZoCWgPQwiKcmn8wksIwJSGlFKUaBVLMmgWR0CoqgYtxuKodX2UKGgGaAloD0MIg1K0ci/gFsCUhpRSlGgVSzJoFkdAqKmkRlHz6XV9lChoBmgJaA9DCNsV+mAZ+wHAlIaUUpRoFUsyaBZHQKipOPLgXM11fZQoaAZoCWgPQwhGzVfJx674v5SGlFKUaBVLMmgWR0CoqMNcfNiZdX2UKGgGaAloD0MIfQT+8PNfAsCUhpRSlGgVSzJoFkdAqKuoXXRPXXV9lChoBmgJaA9DCIdNZOYClwHAlIaUUpRoFUsyaBZHQKirRY1YQrd1fZQoaAZoCWgPQwjvy5ntCr32v5SGlFKUaBVLMmgWR0CoqtlL39JjdX2UKGgGaAloD0MIJ0wYzcp29b+UhpRSlGgVSzJoFkdAqKpi8BdUsHV9lChoBmgJaA9DCFfp7jobsv2/lIaUUpRoFUsyaBZHQKist3IuGsV1fZQoaAZoCWgPQwgiiPNwAhP7v5SGlFKUaBVLMmgWR0CorFRxtHhCdX2UKGgGaAloD0MIM93rpL4sAsCUhpRSlGgVSzJoFkdAqKvn3SKFZnV9lChoBmgJaA9DCM44DVGF7xPAlIaUUpRoFUsyaBZHQKircVdonKJ1fZQoaAZoCWgPQwh40VeQZiz+v5SGlFKUaBVLMmgWR0CorcndweeWdX2UKGgGaAloD0MI9tTqq6uSE8CUhpRSlGgVSzJoFkdAqK1nCj1wpHV9lChoBmgJaA9DCPYjRWRYdRHAlIaUUpRoFUsyaBZHQKis+oESuhd1fZQoaAZoCWgPQwgyyjMvhx35v5SGlFKUaBVLMmgWR0CorIQUYbbUdX2UKGgGaAloD0MIZfuQt1y997+UhpRSlGgVSzJoFkdAqK7lbkfcOHV9lChoBmgJaA9DCMmSOZZ3FQfAlIaUUpRoFUsyaBZHQKiugpbUwzt1fZQoaAZoCWgPQwj/JD53gj30v5SGlFKUaBVLMmgWR0CorhY3vQWvdX2UKGgGaAloD0MItHdGW5WkAMCUhpRSlGgVSzJoFkdAqK2fn6l+E3V9lChoBmgJaA9DCBNlbynniwLAlIaUUpRoFUsyaBZHQKiv97N0NjN1fZQoaAZoCWgPQwiLqIk+H+UAwJSGlFKUaBVLMmgWR0Cor5TlkpZwdX2UKGgGaAloD0MIfSB551BmDMCUhpRSlGgVSzJoFkdAqK8odjoZAXV9lChoBmgJaA9DCDcbKzHPag3AlIaUUpRoFUsyaBZHQKiuse/YapB1fZQoaAZoCWgPQwgZVBuciB4CwJSGlFKUaBVLMmgWR0CosQ91U2k0dX2UKGgGaAloD0MI+rfLft3pAsCUhpRSlGgVSzJoFkdAqLCsfDDTB3V9lChoBmgJaA9DCJ7t0RvuYwXAlIaUUpRoFUsyaBZHQKiwP/Pw/gR1fZQoaAZoCWgPQwgxKNNochEEwJSGlFKUaBVLMmgWR0Cor8lsHjZMdX2UKGgGaAloD0MIxr5k48F2FcCUhpRSlGgVSzJoFkdAqLIqY5T6znV9lChoBmgJaA9DCDrLLEKxRRDAlIaUUpRoFUsyaBZHQKixx7P6bfB1fZQoaAZoCWgPQwiQn41cN0UHwJSGlFKUaBVLMmgWR0CosVt6gM+edX2UKGgGaAloD0MIN4qsNZTaBsCUhpRSlGgVSzJoFkdAqLDlINEw4HV9lChoBmgJaA9DCFiR0QFJ2P+/lIaUUpRoFUsyaBZHQKizVz3h4t91fZQoaAZoCWgPQwgB+RIqOHz+v5SGlFKUaBVLMmgWR0CosvROUMXrdX2UKGgGaAloD0MIZYo5CDqqE8CUhpRSlGgVSzJoFkdAqLKH5vcafnV9lChoBmgJaA9DCECmtWlsrwbAlIaUUpRoFUsyaBZHQKiyEWZZ0S11fZQoaAZoCWgPQwiU93E0R9b9v5SGlFKUaBVLMmgWR0CotGtk4FRpdX2UKGgGaAloD0MII8DpXbwf+L+UhpRSlGgVSzJoFkdAqLQIaDPGAHV9lChoBmgJaA9DCJsg6j4A2RXAlIaUUpRoFUsyaBZHQKizm+L3sX11fZQoaAZoCWgPQwg9npYfuOoKwJSGlFKUaBVLMmgWR0CosyVUVBUrdX2UKGgGaAloD0MIYHXkSGfwFcCUhpRSlGgVSzJoFkdAqLXuG7Bfr3V9lChoBmgJaA9DCCUfuwuU1Pe/lIaUUpRoFUsyaBZHQKi1iygwoLJ1fZQoaAZoCWgPQwhDcFzGTU32v5SGlFKUaBVLMmgWR0CotR6zu4PPdX2UKGgGaAloD0MIGxGMg0vnE8CUhpRSlGgVSzJoFkdAqLSoSzw+dXV9lChoBmgJaA9DCOokW11OSf+/lIaUUpRoFUsyaBZHQKi3HHuqm0p1fZQoaAZoCWgPQwh9XBsqxmkSwJSGlFKUaBVLMmgWR0CotrmZ/kNndX2UKGgGaAloD0MIz582qtNBB8CUhpRSlGgVSzJoFkdAqLZNDrqt5nV9lChoBmgJaA9DCMh+FkuRvPK/lIaUUpRoFUsyaBZHQKi11pkf9xZ1fZQoaAZoCWgPQwjerwJ8t7kDwJSGlFKUaBVLMmgWR0CouDONxVABdX2UKGgGaAloD0MIdELooEs497+UhpRSlGgVSzJoFkdAqLfQvvjOs3V9lChoBmgJaA9DCPtA8s6hjATAlIaUUpRoFUsyaBZHQKi3ZEfDDTB1fZQoaAZoCWgPQwg1YJD0aRUJwJSGlFKUaBVLMmgWR0Cotu2sRxtIdX2UKGgGaAloD0MIGvfmN0w087+UhpRSlGgVSzJoFkdAqLlYIF/x2HV9lChoBmgJaA9DCJiJIqRu5wvAlIaUUpRoFUsyaBZHQKi49UMG5c11fZQoaAZoCWgPQwiWeauuQ7UVwJSGlFKUaBVLMmgWR0CouIjbBXS0dX2UKGgGaAloD0MIVffI5qp5DMCUhpRSlGgVSzJoFkdAqLgSX8fmtHV9lChoBmgJaA9DCFRW0/VElxnAlIaUUpRoFUsyaBZHQKi6dU8V58l1fZQoaAZoCWgPQwjp0r8klakIwJSGlFKUaBVLMmgWR0CouhJXQtz0dX2UKGgGaAloD0MIh4xHqYTn/b+UhpRSlGgVSzJoFkdAqLmlxQzk63V9lChoBmgJaA9DCFoSoKaWbQjAlIaUUpRoFUsyaBZHQKi5LxoZhrp1fZQoaAZoCWgPQwhRbAVNS6z+v5SGlFKUaBVLMmgWR0Cou6AAIY3vdX2UKGgGaAloD0MIT62+uirwAsCUhpRSlGgVSzJoFkdAqLs9NJvo/3V9lChoBmgJaA9DCEmgwabOowTAlIaUUpRoFUsyaBZHQKi60MiKR+11fZQoaAZoCWgPQwjnw7MEGYEXwJSGlFKUaBVLMmgWR0Coulp0wJw9dX2UKGgGaAloD0MIo5BkVu+wCMCUhpRSlGgVSzJoFkdAqLy1TcZccHV9lChoBmgJaA9DCHx+GCE8mvi/lIaUUpRoFUsyaBZHQKi8UnGbTc91fZQoaAZoCWgPQwjXTSmvlVD1v5SGlFKUaBVLMmgWR0Cou+YEnssydX2UKGgGaAloD0MIBBvXv+sz+b+UhpRSlGgVSzJoFkdAqLtvlbNbDHV9lChoBmgJaA9DCI81I4PcRf6/lIaUUpRoFUsyaBZHQKi93DeCTU11fZQoaAZoCWgPQwh6xyk6kosAwJSGlFKUaBVLMmgWR0CovXlr2xptdX2UKGgGaAloD0MIRpiiXBovFMCUhpRSlGgVSzJoFkdAqL0NDD0lJHV9lChoBmgJaA9DCOusFthjIgPAlIaUUpRoFUsyaBZHQKi8lnPE87p1fZQoaAZoCWgPQwioNc07TrEAwJSGlFKUaBVLMmgWR0CovvQdjoZAdX2UKGgGaAloD0MIFK5H4XrUDMCUhpRSlGgVSzJoFkdAqL6RMi8nNXV9lChoBmgJaA9DCItUGFsIEgjAlIaUUpRoFUsyaBZHQKi+JKGtZFJ1fZQoaAZoCWgPQwhqUDQPYJEQwJSGlFKUaBVLMmgWR0Cova4IrvsrdX2UKGgGaAloD0MIniPyXUqdAcCUhpRSlGgVSzJoFkdAqMChb4agmXV9lChoBmgJaA9DCIdQpWYP9A3AlIaUUpRoFUsyaBZHQKjAP17pmmN1fZQoaAZoCWgPQwgJ/yJozHQUwJSGlFKUaBVLMmgWR0Cov9PSc9W7dX2UKGgGaAloD0MITIqPT8heFcCUhpRSlGgVSzJoFkdAqL9eD15B1XV9lChoBmgJaA9DCOLIA5FFihPAlIaUUpRoFUsyaBZHQKjCgh3aBZp1fZQoaAZoCWgPQwg26iEa3QH1v5SGlFKUaBVLMmgWR0Cowh/3vhIfdX2UKGgGaAloD0MIptb7jXYcEMCUhpRSlGgVSzJoFkdAqMG0ZaV2R3V9lChoBmgJaA9DCOjc7XppahnAlIaUUpRoFUsyaBZHQKjBPpyIYWN1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53c22b7ec122464c1e965446e7be61908c5e6604a0d8d6bd124cdad8107fa664
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d73af3cc41d7035177a2eaca61f860b725a2be584ceb4a9a99c6f12e48c583d
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.6
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7d39314245e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d3931407e00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690145646284873006, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAfsDEPnvA6jt/7xQ/fsDEPnvA6jt/7xQ/fsDEPnvA6jt/7xQ/fsDEPnvA6jt/7xQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMnZqPwD5ez4KCNq/5CpzP7oEvD+wXEo/bdZePY16Ij/LCqS/48OlPjD8PL8vSae/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB+wMQ+e8DqO3/vFD9NJP87ojweOT/yMTx+wMQ+e8DqO3/vFD9NJP87ojweOT/yMTx+wMQ+e8DqO3/vFD9NJP87ojweOT/yMTx+wMQ+e8DqO3/vFD9NJP87ojweOT/yMTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.3842811 0.00716406 0.5817794 ]\n [0.3842811 0.00716406 0.5817794 ]\n [0.3842811 0.00716406 0.5817794 ]\n [0.3842811 0.00716406 0.5817794 ]]", "desired_goal": "[[ 0.915866 0.24606705 -1.7033703 ]\n [ 0.9498732 1.4688942 0.7904768 ]\n [ 0.05440371 0.6346825 -1.2815794 ]\n [ 0.32376012 -0.7382231 -1.3069209 ]]", "observation": "[[3.8428110e-01 7.1640587e-03 5.8177942e-01 7.7863098e-03 1.5090642e-04\n 1.0860979e-02]\n [3.8428110e-01 7.1640587e-03 5.8177942e-01 7.7863098e-03 1.5090642e-04\n 1.0860979e-02]\n [3.8428110e-01 7.1640587e-03 5.8177942e-01 7.7863098e-03 1.5090642e-04\n 1.0860979e-02]\n [3.8428110e-01 7.1640587e-03 5.8177942e-01 7.7863098e-03 1.5090642e-04\n 1.0860979e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAeo7hvUk+ajxBikI+McQOPZoIdT15bpU+N4QJvtdLmT1q3Iw+ZKXYPSVdD73/FGs+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.11013503 0.01429708 0.18998052]\n [ 0.03485507 0.05982266 0.29185846]\n [-0.13429342 0.07485168 0.27511913]\n [ 0.10578421 -0.03500094 0.22957228]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYk1lUdilCsCUhpRSlIwBbJRLMowBdJRHQKihgo6S1Vp1fZQoaAZoCWgPQwhR3Vz8bQ8WwJSGlFKUaBVLMmgWR0CooSClabF1dX2UKGgGaAloD0MIdELooEvYBMCUhpRSlGgVSzJoFkdAqKC1RNyo43V9lChoBmgJaA9DCIl46/zb5fm/lIaUUpRoFUsyaBZHQKigP5i3G4t1fZQoaAZoCWgPQwg9EFmkifcBwJSGlFKUaBVLMmgWR0Coo+krPMSsdX2UKGgGaAloD0MInrex2ZGqCMCUhpRSlGgVSzJoFkdAqKOHapPykXV9lChoBmgJaA9DCKDf929efA7AlIaUUpRoFUsyaBZHQKijHhLGrCF1fZQoaAZoCWgPQwgPml33VuQNwJSGlFKUaBVLMmgWR0CooqiiAUcodX2UKGgGaAloD0MIMQxYchWLD8CUhpRSlGgVSzJoFkdAqKZF67dzn3V9lChoBmgJaA9DCCr/Wl65nhLAlIaUUpRoFUsyaBZHQKil49hZyMl1fZQoaAZoCWgPQwhUrYVZaKcPwJSGlFKUaBVLMmgWR0CopXiblRxcdX2UKGgGaAloD0MIhSSzeofb7r+UhpRSlGgVSzJoFkdAqKUDFl05l3V9lChoBmgJaA9DCKJinL8JhQTAlIaUUpRoFUsyaBZHQKioG3BpHqh1fZQoaAZoCWgPQwgFFytqMB0WwJSGlFKUaBVLMmgWR0Cop7mXw9aEdX2UKGgGaAloD0MI1o7iHHXUAsCUhpRSlGgVSzJoFkdAqKdN2FFlTXV9lChoBmgJaA9DCGnhsgqbAf+/lIaUUpRoFUsyaBZHQKim1/Yrauh1fZQoaAZoCWgPQwiKcmn8wksIwJSGlFKUaBVLMmgWR0CoqgYtxuKodX2UKGgGaAloD0MIg1K0ci/gFsCUhpRSlGgVSzJoFkdAqKmkRlHz6XV9lChoBmgJaA9DCNsV+mAZ+wHAlIaUUpRoFUsyaBZHQKipOPLgXM11fZQoaAZoCWgPQwhGzVfJx674v5SGlFKUaBVLMmgWR0CoqMNcfNiZdX2UKGgGaAloD0MIfQT+8PNfAsCUhpRSlGgVSzJoFkdAqKuoXXRPXXV9lChoBmgJaA9DCIdNZOYClwHAlIaUUpRoFUsyaBZHQKirRY1YQrd1fZQoaAZoCWgPQwjvy5ntCr32v5SGlFKUaBVLMmgWR0CoqtlL39JjdX2UKGgGaAloD0MIJ0wYzcp29b+UhpRSlGgVSzJoFkdAqKpi8BdUsHV9lChoBmgJaA9DCFfp7jobsv2/lIaUUpRoFUsyaBZHQKist3IuGsV1fZQoaAZoCWgPQwgiiPNwAhP7v5SGlFKUaBVLMmgWR0CorFRxtHhCdX2UKGgGaAloD0MIM93rpL4sAsCUhpRSlGgVSzJoFkdAqKvn3SKFZnV9lChoBmgJaA9DCM44DVGF7xPAlIaUUpRoFUsyaBZHQKircVdonKJ1fZQoaAZoCWgPQwh40VeQZiz+v5SGlFKUaBVLMmgWR0CorcndweeWdX2UKGgGaAloD0MI9tTqq6uSE8CUhpRSlGgVSzJoFkdAqK1nCj1wpHV9lChoBmgJaA9DCPYjRWRYdRHAlIaUUpRoFUsyaBZHQKis+oESuhd1fZQoaAZoCWgPQwgyyjMvhx35v5SGlFKUaBVLMmgWR0CorIQUYbbUdX2UKGgGaAloD0MIZfuQt1y997+UhpRSlGgVSzJoFkdAqK7lbkfcOHV9lChoBmgJaA9DCMmSOZZ3FQfAlIaUUpRoFUsyaBZHQKiugpbUwzt1fZQoaAZoCWgPQwj/JD53gj30v5SGlFKUaBVLMmgWR0CorhY3vQWvdX2UKGgGaAloD0MItHdGW5WkAMCUhpRSlGgVSzJoFkdAqK2fn6l+E3V9lChoBmgJaA9DCBNlbynniwLAlIaUUpRoFUsyaBZHQKiv97N0NjN1fZQoaAZoCWgPQwiLqIk+H+UAwJSGlFKUaBVLMmgWR0Cor5TlkpZwdX2UKGgGaAloD0MIfSB551BmDMCUhpRSlGgVSzJoFkdAqK8odjoZAXV9lChoBmgJaA9DCDcbKzHPag3AlIaUUpRoFUsyaBZHQKiuse/YapB1fZQoaAZoCWgPQwgZVBuciB4CwJSGlFKUaBVLMmgWR0CosQ91U2k0dX2UKGgGaAloD0MI+rfLft3pAsCUhpRSlGgVSzJoFkdAqLCsfDDTB3V9lChoBmgJaA9DCJ7t0RvuYwXAlIaUUpRoFUsyaBZHQKiwP/Pw/gR1fZQoaAZoCWgPQwgxKNNochEEwJSGlFKUaBVLMmgWR0Cor8lsHjZMdX2UKGgGaAloD0MIxr5k48F2FcCUhpRSlGgVSzJoFkdAqLIqY5T6znV9lChoBmgJaA9DCDrLLEKxRRDAlIaUUpRoFUsyaBZHQKixx7P6bfB1fZQoaAZoCWgPQwiQn41cN0UHwJSGlFKUaBVLMmgWR0CosVt6gM+edX2UKGgGaAloD0MIN4qsNZTaBsCUhpRSlGgVSzJoFkdAqLDlINEw4HV9lChoBmgJaA9DCFiR0QFJ2P+/lIaUUpRoFUsyaBZHQKizVz3h4t91fZQoaAZoCWgPQwgB+RIqOHz+v5SGlFKUaBVLMmgWR0CosvROUMXrdX2UKGgGaAloD0MIZYo5CDqqE8CUhpRSlGgVSzJoFkdAqLKH5vcafnV9lChoBmgJaA9DCECmtWlsrwbAlIaUUpRoFUsyaBZHQKiyEWZZ0S11fZQoaAZoCWgPQwiU93E0R9b9v5SGlFKUaBVLMmgWR0CotGtk4FRpdX2UKGgGaAloD0MII8DpXbwf+L+UhpRSlGgVSzJoFkdAqLQIaDPGAHV9lChoBmgJaA9DCJsg6j4A2RXAlIaUUpRoFUsyaBZHQKizm+L3sX11fZQoaAZoCWgPQwg9npYfuOoKwJSGlFKUaBVLMmgWR0CosyVUVBUrdX2UKGgGaAloD0MIYHXkSGfwFcCUhpRSlGgVSzJoFkdAqLXuG7Bfr3V9lChoBmgJaA9DCCUfuwuU1Pe/lIaUUpRoFUsyaBZHQKi1iygwoLJ1fZQoaAZoCWgPQwhDcFzGTU32v5SGlFKUaBVLMmgWR0CotR6zu4PPdX2UKGgGaAloD0MIGxGMg0vnE8CUhpRSlGgVSzJoFkdAqLSoSzw+dXV9lChoBmgJaA9DCOokW11OSf+/lIaUUpRoFUsyaBZHQKi3HHuqm0p1fZQoaAZoCWgPQwh9XBsqxmkSwJSGlFKUaBVLMmgWR0CotrmZ/kNndX2UKGgGaAloD0MIz582qtNBB8CUhpRSlGgVSzJoFkdAqLZNDrqt5nV9lChoBmgJaA9DCMh+FkuRvPK/lIaUUpRoFUsyaBZHQKi11pkf9xZ1fZQoaAZoCWgPQwjerwJ8t7kDwJSGlFKUaBVLMmgWR0CouDONxVABdX2UKGgGaAloD0MIdELooEs497+UhpRSlGgVSzJoFkdAqLfQvvjOs3V9lChoBmgJaA9DCPtA8s6hjATAlIaUUpRoFUsyaBZHQKi3ZEfDDTB1fZQoaAZoCWgPQwg1YJD0aRUJwJSGlFKUaBVLMmgWR0Cotu2sRxtIdX2UKGgGaAloD0MIGvfmN0w087+UhpRSlGgVSzJoFkdAqLlYIF/x2HV9lChoBmgJaA9DCJiJIqRu5wvAlIaUUpRoFUsyaBZHQKi49UMG5c11fZQoaAZoCWgPQwiWeauuQ7UVwJSGlFKUaBVLMmgWR0CouIjbBXS0dX2UKGgGaAloD0MIVffI5qp5DMCUhpRSlGgVSzJoFkdAqLgSX8fmtHV9lChoBmgJaA9DCFRW0/VElxnAlIaUUpRoFUsyaBZHQKi6dU8V58l1fZQoaAZoCWgPQwjp0r8klakIwJSGlFKUaBVLMmgWR0CouhJXQtz0dX2UKGgGaAloD0MIh4xHqYTn/b+UhpRSlGgVSzJoFkdAqLmlxQzk63V9lChoBmgJaA9DCFoSoKaWbQjAlIaUUpRoFUsyaBZHQKi5LxoZhrp1fZQoaAZoCWgPQwhRbAVNS6z+v5SGlFKUaBVLMmgWR0Cou6AAIY3vdX2UKGgGaAloD0MIT62+uirwAsCUhpRSlGgVSzJoFkdAqLs9NJvo/3V9lChoBmgJaA9DCEmgwabOowTAlIaUUpRoFUsyaBZHQKi60MiKR+11fZQoaAZoCWgPQwjnw7MEGYEXwJSGlFKUaBVLMmgWR0Coulp0wJw9dX2UKGgGaAloD0MIo5BkVu+wCMCUhpRSlGgVSzJoFkdAqLy1TcZccHV9lChoBmgJaA9DCHx+GCE8mvi/lIaUUpRoFUsyaBZHQKi8UnGbTc91fZQoaAZoCWgPQwjXTSmvlVD1v5SGlFKUaBVLMmgWR0Cou+YEnssydX2UKGgGaAloD0MIBBvXv+sz+b+UhpRSlGgVSzJoFkdAqLtvlbNbDHV9lChoBmgJaA9DCI81I4PcRf6/lIaUUpRoFUsyaBZHQKi93DeCTU11fZQoaAZoCWgPQwh6xyk6kosAwJSGlFKUaBVLMmgWR0CovXlr2xptdX2UKGgGaAloD0MIRpiiXBovFMCUhpRSlGgVSzJoFkdAqL0NDD0lJHV9lChoBmgJaA9DCOusFthjIgPAlIaUUpRoFUsyaBZHQKi8lnPE87p1fZQoaAZoCWgPQwioNc07TrEAwJSGlFKUaBVLMmgWR0CovvQdjoZAdX2UKGgGaAloD0MIFK5H4XrUDMCUhpRSlGgVSzJoFkdAqL6RMi8nNXV9lChoBmgJaA9DCItUGFsIEgjAlIaUUpRoFUsyaBZHQKi+JKGtZFJ1fZQoaAZoCWgPQwhqUDQPYJEQwJSGlFKUaBVLMmgWR0Cova4IrvsrdX2UKGgGaAloD0MIniPyXUqdAcCUhpRSlGgVSzJoFkdAqMChb4agmXV9lChoBmgJaA9DCIdQpWYP9A3AlIaUUpRoFUsyaBZHQKjAP17pmmN1fZQoaAZoCWgPQwgJ/yJozHQUwJSGlFKUaBVLMmgWR0Cov9PSc9W7dX2UKGgGaAloD0MITIqPT8heFcCUhpRSlGgVSzJoFkdAqL9eD15B1XV9lChoBmgJaA9DCOLIA5FFihPAlIaUUpRoFUsyaBZHQKjCgh3aBZp1fZQoaAZoCWgPQwg26iEa3QH1v5SGlFKUaBVLMmgWR0Cowh/3vhIfdX2UKGgGaAloD0MIptb7jXYcEMCUhpRSlGgVSzJoFkdAqMG0ZaV2R3V9lChoBmgJaA9DCOjc7XppahnAlIaUUpRoFUsyaBZHQKjBPpyIYWN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (390 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -3.0710797948762774, "std_reward": 1.6247819192710349, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-23T21:50:51.933034"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:92905587a505b359516bfea08d4be58f4283281a8ab219272a68ec3b3ec7bb44
|
3 |
+
size 2387
|